
A New Timestamping Scheme Based on Skip Lists1

Kaouthar Blibech, Alban Gabillon

LIUPPA/CSySEC,
Université de Pau – IUT de Mont de Marsan

France
k.blibech@etud.univ-pau.fr alban.gabillon@univ-pau.fr

Abstract. Time stamping is a cryptographic technique providing us with a
proof-of-existence of a message/document at a given time. Several
timestamping schemes have already been proposed [1-10]. In this paper, we
first define a new timestamping scheme which is based on skip lists [11]. Then,
we show that our scheme offers nice properties and optimal performances.

1 Introduction

Timestamping is a technique for providing proof-of-existence of a message/document
at a given time. Timestamping is mandatory in many domains like patent
submissions, electronic votes or electronic commerce. Timestamping can ensure non-
repudiation. Indeed, a digital signature is only legally binding if it was made when the
user's certificate was still valid, and a timestamp on a signature can prove this. Parties
of a timestamping system are the followings:

Client: forms the timestamping request which is the digest of the document to be
timestamped. The client computes this digest by using a well known one-way2
collision-free3 hashing function. Submitting the digest of the document instead of the
document itself preserves the confidentiality of the document.

TimeStamping Authority (TSA): receives the timestamping request at time t and
issues the timestamp. The timestamp is a proof that the digest was received at time t.
The TSA produces the timestamp according to a timestamping scheme.

Verifier: verifies the correctness of the timestamp by using the verification scheme
corresponding to the timestamping scheme which was used to produce the timestamp.

Most of the existing timestamping schemes are linking schemes. Linking schemes
were introduced by Haber and Stornetta [7]. Such schemes significantly reduce the
scope of operations the TSA has to be trusted for. Basically, they work as follows:

During a time interval which is called a round, the TSA,

1 This work was supported by the Conseil Général des Landes and the French
ministry for research under ACI Sécurité Informatique 2003-2006, Projet CHRONOS.
2 one-way means that no portion of the original document can be reconstructed from the digest
3 collision-free means that it is infeasible to find x and x’ satisfying h(x) = h(x’)

mailto:k.blibech@etud.univ-pau.fr
mailto:alban.gabillon@univ-pau.fr

- receives a set of timestamping requests,
- aggregates the requests in order to produce a round token,
- returns the timestamps to the clients. Each timestamp consists of the round

token, the digest and the authentication path proving that the round token
depends on the digest.

Each round token is one-way dependent on the round tokens issued before. Round
tokens are regularly published in a widely distributed media (a newspaper). After the
publication it becomes impossible to forge timestamps (either to issue fake ones
afterwards, or modify already issued ones), even for the TSA.

In the case of partially ordered linking schemes [1][2][3], only timestamps from
different rounds are comparable whereas in the case of totally ordered linking
schemes [5][6][7], the temporal order of any two timestamps can be verified even if
these two timestamps belong to the same round. Partially ordered schemes are
generally simpler than totally ordered schemes. However, as mentioned by Arne et
al. [12], since totally ordered linking schemes allow us to compare two timestamps of
the same round, longer rounds can be used. Using longer rounds enables reducing the
amount of data to be published and the amount of data to be verified.

The purpose of this paper is to define a new totally ordered scheme which is
simpler than the existing ones and which shows optimal performances. Our scheme
uses a skip list. A skip list is a data structure which was defined by Pugh [11].

This paper is organized as follows: section 2 reviews related works. Section 3
presents our scheme. Section 4 deals with performance issues. Finally section 5
concludes this paper.

2 Related Works

Our scheme can be compared to the following existing schemes:
- Partially ordered timestamping schemes [1] [2][3]
- Totally ordered timestamping schemes [5][6][7]

Most of the existing partially ordered timestamping schemes are either based on
Merkle trees (binary trees) [1][2] or on cryptographic accumulators [3]. With these
schemes, only timestamps from different rounds are comparable. Moreover, schemes
based on Merkle trees require the number of requests per round to be a power of 2
whereas schemes based on accumulators generally introduce a cryptographic trapdoor
due to the use of the RSA modulus.

Existing totally ordered timestamping schemes are the simply linking scheme [7],
the binary linking scheme [5] and the threaded authentication tree scheme [6]. The
verification procedure for the simply linking scheme is costly (O(n), where n is the
number of received requests) and requires that the TSA saves the entire chronological
chain of timestamps.

The binary linking scheme uses a simply connected authentication graph. In
addition to its complexity, this scheme is less efficient in terms of time complexity
than the Merkle tree scheme for both timestamping and verification due to additional
concatenation operations.

The threaded tree scheme can be seen as an improvement of the Merkle tree scheme.
It is easier to implement than the binary linking scheme and it issues smaller
timestamps. However, when compared to other schemes based on Merkle trees, it still
has larger time complexity for both timestamping and verification due to the
additional concatenation operations.

3 A New Timestamping Scheme

3.1 Skip lists

W. Pugh introduced skip lists as an alternative data structure to search trees [11].
The main idea is to add pointers to a simple linked list in order to skip a large part of
the list when searching for a particular element. While each element in a simple
linked list points only to its immediate successor, elements in a skip list can point to
several successors.

Skip lists can be seen as a set of linked lists, one list per level (see figure 1). All
the elements are stored at the first level 0. A selection of elements of level k is
included in the list at level k+1. In probabilistic skip lists, if element e belongs to
level k then it belongs to level k + 1 with probability p. In deterministic skip lists, if
element e belongs to level k and respects some given constraints, then it belongs to
level k+1. For example, in perfect skip lists (see figure 1), which are the most known
deterministic skip lists, element e belongs to level i if its index is a multiple of 2i.
Consequently, element at index 5 belongs only to the first level, while element at
index 4 belongs to the three first levels. In figure1, B and E nodes are stored at all
levels and called sentinel elements. The highest B node is called starting node St. The
highest E node is called ending node Et.

Fig. 1. Nodes contain the elements of the set {5,10,13,14,15,35,34}. Edges are the
pointers. Numbers [0..3] are the levels. Numbers [1..7] are the indexes

3.2 Timestamping scheme

In [13], we defined an authenticated dictionary based on skip lists. An authenticated
dictionary is a data structure that supports both update queries and tamper-evident
membership queries. A tamper-evident membership query is of the form “does

B

B

B

B 5 10 13 14 15 35 34 E

E

E

E

10 14

14

35

EtSt 3

2

1

0

1 2 3 4 5 6 7

element e belong to set S?”. If e belongs to S then the answer to such a query is a
proof that e belongs to S.

The purpose of this paper is to define a new totally linking timestamping scheme
based on the dictionary we defined in [13]. Our scheme uses one append-only perfect
skip list per round. Elements of the skip lists are the timestamping requests. Each new
request is appended to the skip list. Since we are dealing with perfect skip lists, each
element of the skip list is associated to one or several nodes according to the index of
the request. Each node has the following four properties:

- its value, which is a timestamping request (digest)
- its level, ranging from 0 to the highest level of the skip list
- its index, which is its position in the skip list
- its label, which is a hash value one way dependent on the labels of the

previous nodes.
Nodes associated to the same element have the same value and index. For

example, let us consider nodes a and p in figure 2. They have the same index (20) and
value (h20). Level of node a is 2 whereas level of node p is 0. Labels of nodes a and p
are not shown but they are different from each other.

The label of the starting node is the round token of the previous round whereas its
value is the last request which was received during the previous round. Basically, our
scheme works as follows:

- Alice sends a timestamping request which is the digest h of a document.
- The TSA appends h to the skip list.
- The TSA immediately returns to Alice a signed acknowledgment containing

the index of h in the skip list and the proof that h is inserted after the elements
which are already in the skip list. We call this proof the head proof (see
algorithm 1).

- The TSA computes the label of each node associated to element h (see
algorithm 2).

- At the end of the round, the TSA inserts the last request which becomes the
ending sentinel element. The label of the ending node is the round token.

- The TSA publishes the round token and sends to Alice (and other clients)
some additional information allowing her to prove that her request belongs to
the round whose token has been published. We call this information the tail
proof (see algorithm 3). The final timestamp consists of the digest h, the index
of h, the head proof, the tail proof and the round token.

- If a verifier, Bob, needs to check the validity of the timestamp then he has to
verify that he can compute the round token from h, the index of h, the head
proof and the tail proof. Bob does the verification by processing algorithm 4.

Figure 2 shows the insertion of h21 at index 21. h16 to h21 are requests (digests of
documents). Numbers [16..21] are indexes. Labels are not shown. The arrows denote
the flow of information for computing the labels (see algorithm 2). The head proof
for h21 consists of the labels of the dark grey nodes (nodes q, o and a) (see algorithm
1).

Fig. 2. Insertion of h21

Fig. 3. Insertion of the ending element

Figure 3 shows the insertion of the ending node (last request of the round). The
arrows denote the flow of information for computing the labels (see algorithm 2). The
label of the ending node is the round token. The tail proof for h21 consists of the value
h22 and the labels of the light grey nodes (nodes r and x) (see algorithm 3). Note that
the last request of the round is h25. Since it is the ending element, it belongs to all
levels although 25 is not a multiple of 25. Figure 3 shows also the verification process
for h21. Labels of thick nodes are computed during the verification process (see the
next section 2.3 about verification).

Algorithm 1 is used to compute the head proof (hp) of the newly inserted element
h. S denotes the skip list. Function height(S) returns the highest level of the skip list S.
Function last(i) returns the last node which was inserted at level i before the insertion
of h. Function label(n) returns the label of node n. We define the plateau node of an
element as the highest node associated to that element. Let us consider the nodes
having an index strictly lower than the index of h. Among these nodes, for each
level l, let us consider the node which has the greatest index. If it is a plateau node
then its label belongs to the head proof.

B 16 17 18 19 20 21

…

…

…

…

…

q
o

h16 h17 h18 h19 h20 h21

h16

h16

h16

level 3h16
a

h18

level 2 h20

h20

p

B

…

Et

22 23 24 25 16 20 21

h16 h20 h21

h16

h16

h16

h16

h20

h20

p h22 h23 h24 h25

h25

h25

h25

h22 h24

h24

h24
a

t

s

r

u
h25

y

x
d

c
b

o

…

h25

q

z

e

Algorithm 1. Head Proof Computation
1: hp := {}
2: For i ranging from 0 to height(S) :
3: If last(i) is a plateau node then
4: append label(last(i)) to hp

Figure 3 shows that the head proof of index 21 consists of the label of node a (that
will be used during the verification to compute the label of node t), the label of node
o (that will be used during the verification to compute the label of node z) and the
label of node q (that will be used during the verification to compute the label of the
ending node i.e. the round token).

Algorithm 2 is used to compute the labels of the nodes associated to the newly
inserted element h. Function value(n) returns the value of node n. Function left(n)
returns the left node of node n. For example, the left node of node t is node a (see
figure 3). Function down(n) returns the bottom node of node n. For example, the
bottom node of node d is node c (see figure 3). hash is a one-way collision-free
hashing function and || is the concatenation operation. Algorithm 2 applies to each
node associated to the newly inserted element starting from the node at level 0 until
the plateau node.

Algorithm 2. Hashing Scheme
1: If down(n) = null, {n is at level 0}:
2: If left(n) is not a plateau node then
3: label(n) := value(n). {case 1}
4: Else
5: label(n) := hash (value(n) || label(left(n))) {case 2}
6: Else :
7: If left(n) is not a plateau node then
8: label (n) := label(down(n)) {case 3}
9: Else
10: label(n) := hash(label(down(n))||label(left(n))) {case 4}

Let us consider node r in figure 3 (index 24, value h24 and level 0) and node e
(index 23, value h23 and level 0). The label of node r is equal to the hash of the value
of node r (h24) concatenated to the label of node e (case 2). Now, let us consider node
s (index 24, value h24 and level 1) and node d (index 22, value h22 and level 1). The
label of node s is equal to the hash of the label of node r concatenated to the label of
node d (case 4). Let us consider also node b (index 21, value h21 and level 0) and
node p (index 20, value h20 and level 0). Node p is not a plateau node, so the label of
node b is equal to its value h21 (case 1). Finally, let us consider node d (index 22,
value h22 and level 1) and node c (index 22, value h22 and level 0). The label of node
d is equal to the label of node c (case 3).

Algorithm 3 is used to compute the tail proof (tp) of elements which were inserted
during the round. Function right(n) returns the right node of node n. For example, the
right node of node d is node s (see figure 3). Function top(n) returns the node on top
of node n. For example, the top node of node s is node t (see figure 3). Computation

of the tail proof of element h starts from the plateau node associated to element h (in
algorithm 3, n is initialized to the plateau node of element h).

Algorithm 3. Tail proof computation
{n is initialized to the plateau node of the element}
1: tp := {}
2: While right(n) != null :
3: n := right(n)
4: if down(n) = null then
5: append value(n) to TP
6: Else
7: append label(down(n)) to TP
8: While top(n) != null :
9: n: = top(n)

Figure 3 shows that the tail proof of element h21 consists of h22 (that will be used
during the verification to compute the label of node c), the label of node r (that will
be used during the verification to compute the label of node s) and the label of node x
(that will be used during the verification to compute the label of node y).

3.3 Verification scheme

We call the traversal chain of element h the smallest sequence of labels that have
to be computed from h in order to determine the round token (label of the ending
node Et). An example of such a chain is given by the labels of the thick nodes in
Figure 3. They represent the traversal chain of element h21. The final timestamp
consists of the digest h, the index of h, the head proof of h, the tail proof of h and the
round token. It contains all the necessary information to compute the traversal chain
of h. The verification process succeeds if the last label of the computed traversal
chain is equal to the round token. If not, the verification fails.

Algorithm 4 describes the verification process. Regarding that algorithm, we need
to define the following functions:

- height(index)4 that returns the level of the plateau node at position index
- leftIndex(index, level)5 that returns the index of the left node of node of index

index and level level
- hasPlateauOnLeft(index, level)6 that indicates if the node of index index and

level level has a plateau node on its left.
- getNext() that extracts the next label from the tail proof,
- getPrec() that extracts the next label from the head proof,

4 Since we are dealing with perfect skip lists, the height h of any element can be computed
from its index i : i = 2h * k where HCF(2, k) = 1.
5 Since we are dealing with perfect skip lists, the left node of a node of index i and level l has
an index j = i − 2l.
6 Consider node n of index i and level l. Consider k such that i − 2l = k * 2l. Since we are
dealing with perfect skip lists, if HCF(2,k) = 1 then the left node of n is a plateau node.

- getNextIndex(index)7 that returns the index of the node whose label is the next
label to be extracted by getNext(). That index can be computed from index.

In algorithm 4, h denotes the request and ih the index of h (included in the
timestamp). token denotes the round token included in the timestamp. Variable label
denotes the label of the current node in the traversal chain. It is initialized to h.

As we can see, the index of the request in the skip list is a parameter of
algorithm 4. If the TSA would lie on the index of the request, then the verification
would fail since it would not be possible to compute the labels of the nodes belonging
to the traversal chain. Since the head proof is returned as a signed acknowledgement
immediately after the request was received, the TSA cannot reorder elements in the
skip list even before publishing the round token.

Algorithm 4. Verification process
1 : {h is the request, ih the index of h}
2 : label := h
3 : index := ih
4 : level := 0
5 : While TP != {}
6 : For i from level to height(index) :
7 : If hasPlateauOnLeft(index, i) then
8 : If leftIndex(index, i) < ih then
9 : label := hash(label||getPrec())
10: If leftIndex(index, i) ≥ ih then
11: label := hash(getNext()||label)
12: level := i.
13: index := getNextIndex(index).
14 : While HP != {} :
15 : label := hash(label||getPrec()).
16: If label = token then return TRUE
17:Else return FALSE

Figure 3 shows the verification process for h21 (ih21 = 21). Labels of thick nodes are
computed during the verification process. Variable label is initialized to h21. Initial
node of level 0 and index 21 is node b. Index of left node of node b is 21-20 (=20).
Left node of node b is not a plateau node. Therefore, label of node b is equal to the
value h21 contained in variable label. Node b is a plateau node. Therefore, the next
node processed by algorithm 4 is node c of index 21+20 (=22) and of level 0. Index of
left node of node c is 22-20 (=21). Left node of node c is a plateau node. Therefore,
label of node c is equal to the hash of the first label extracted from the tail proof
(value of node c) concatenated to the label of node b (hash(h22||h21)). Node c is not a
plateau node. Therefore, the next node processed by algorithm 4 is node d of the
same index 22 and of level 0+1 (=1). Left node of node d is not a plateau node.
Therefore, label of node d is equal to label of node c (hash(h22||h21)). Node d is a
plateau node. Therefore, the next node processed by algorithm 4 is node s of index

7 Since we are dealing with perfect skip lists, the next index j can be computed from the
current index i: j = i+2h, where h is the height of the element at position i.

22+21 (=24) and of level 1. Index of left node of node s is 24-21 (=22). Left node of
node s is a plateau node. Therefore, label of node s is equal to the hash of the second
label extracted from the tail proof (label of node r) concatenated to the label of node
d. Node s is not a plateau node. Therefore, the next node processed by algorithm 4 is
node t of index 24 and of level 2. Index of left node of node t is 24-22 (=20). Left
node of node t is a plateau node. Therefore, label of node t is equal to the hash of the
label of node s concatenated to the first label extracted from the head proof (label of
node a). Node t is not a plateau node. Therefore, the next node processed by
algorithm 4 is node u of index 24 and of level 3. Left node of node u is not a plateau
node. Therefore, label of node u is equal to label of node t. Node u is a plateau node.
Therefore, the next node processed by algorithm 4 is the node of index 24+23 (=32)
and level 3. Note that in figure 3, there is no node of index 32. In fact, everything
works as if 32 was the index of the ending element. Consequently, the next node is
node y. Left node of node y is node u which is a plateau node. Index of left node is
32−23 (=24). Therefore, the label of node y is equal to the hash of the third (and last)
label extracted from the tail proof (label of node x) concatenated to the label of node
u. Since node y is not a plateau node, the next node processed by algorithm 4 is the
node of index 32 and level 4 i.e. node z. Index of left node of node z is 32-24 (=16).
Left node of node z is a plateau node. Therefore, label of node z is equal to the hash
of the label of node y concatenated to the second label extracted from the head proof
(label of node o). Since node z is not a plateau node, the next node processed by
algorithm 4 is the node of index 32 and level 5 i.e. the node on top of node z i.e. the
ending node. Index of left node of the ending node is 32-25 (=0). Left node of the
ending node is a plateau node. Therefore, label of the ending node is equal to the hash
of the label of node z concatenated to the last label extracted from the head proof
(label of node q). Since there is no more labels to extract, neither from the tail proof
nor from the head proof, Algorithm 4 compares the last computed label to the round
token included in the timestamp. If the two labels are equal then the verification
succeeds. If not, the verification fails.

4 Performances

We have implemented a prototype of our time-stamping scheme. We present the
performances of our prototype in terms of space complexity. We focus on the number
of hashing operations which are necessary to timestamp n documents (figure 4), and
on the size of the timestamps (figure 5). In both figure 4 and figure 5, the X-axes
stands for the number of requests. In figure 4, the Y-axis denotes the number of
hashing operations made by the timestamping system whereas in figure 5, it denotes
the number of digests included in the timestamps. From these two figures, we can see
that the number of hashing operations is O(n) and the number of digests included in
the timestamps is O(lg(n)). In fact, our scheme has the same space complexity than
the most efficient schemes used for timestamping (Merkle trees, threaded tree
scheme, binary linking scheme…). However, compared to the binary linking scheme
and to the threaded authentication tree scheme, our timestamping scheme has a
smaller time complexity both for timestamping and verification. Indeed, our scheme

needs as many concatenation operations as hashing operations, whereas binary
linking scheme and threaded tree scheme need at least twice as many concatenation
operations as hashing operations. Moreover, our scheme avoids the drawbacks of
binary structures and accumulator systems.

Finally, let us mention that we could also compare our scheme to existing
authenticated dictionary based on skip lists [10][14][15][16][17]. The reader can refer
to [13] for such a comparison.

0

2000

4000

6000

8000

10000

12000

0 2000 4 000 60 00 8000 10000 12000

n (thousands)

N
um

be
r o

f h
as

hs
 (t

ho
us

an
ds

)

Chronos hashs

Fig. 4. Hashing cost

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000

n (thousands)

Si
ze

 o
f p

ro
of

s

Chronos average Size
Chronos min Size
Chronos max Size

Fig. 5. Size of proofs

5 Conclusion

In this paper, we define a new totally ordered linking scheme based on skip lists. Our
scheme offers better performances than existing totally ordered timestamping
schemes. Moreover, it is easy to implement.

Our scheme is for a single server TSA. The main drawback of single server TSAs
is that they are vulnerable to denials of service. In [18], we suggest some directions to
implement a multi-server timestamping system. The main idea used in [18] is to
randomly choose k servers among n. In a future work, we plan to develop a
distributed version of our scheme based on skip lists, which would use this concept of
k among n.

References

1. Bayer, D., Haber, S., Stornetta, W.: Improving the efficiency and reliability of digital time-
stamping. In Sequences’91: Methods in Communication, Security and Computer Science,
(1992) 329–334.

2. Benaloh, J., De Mare, M.: Efficient Broadcast time-stamping. Technical report 1,
Clarkson University Department of Mathematics and Computer Science (1991).

3. Benaloh, J., De Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. Advances in Cryptology (1993).

4. Buldas, A., Laud, P.: New Linking Schemes for Digital Time-Stamping. First
International Conference on Information Security and Cryptology (1998).

5. Buldas, A., Laud, P., Lipmaa, A., Villemson J.: Time-stamping with Binary Linking
Schemes. Lecture Notes in Computer Science, Vol. 1462. Springer-Verlag, Santa Barbara,
USA (1998) 486–501.

6. Buldas, A., Lipmaa, A., Schoenmakers, B.: Optimally efficient accountable time-stamping.
Public Key Cryptography (2000) 293–305.

7. Haber, S., Stornetta, W. S.: How to Time-stamp a Digital Document. Journal of
Cryptology: the Journal of the International Association for Cryptologic Research 3(2)
(1991).

8. Massias, H., Quisquater, J.J., Serret, X.: Timestamps : Main issues on their use
and implementation. Proc. of IEEE 8th International workshop on enabling
technologies: Infrastucture for collaborative enterprises (1999).

9. Massias, H., Quisquater, J.J., Serret, X.: Proc. of the 20th symposium on
Information Theory in the Benelux (1999).

10. Maniatis, P., Giuli, T. J., Baker, M.: Enabling the long-term archival of signed documents
through Time Stamping. Technical Report, Computer Science Department, Stanford
University, California, USA, 2001.

11. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications of the
ACM (1990) 668–676.

12. Ansper, A., Buldas, A., Willemson, J.: General linking schemes for digital time-stamping.
Technical Report (1999).

13. Blibech, K., Gabillon, A.: Authenticated dictionary based on skip lists for timestamping
systems. Proc. of the 12th ACM Conference on Computer Security, Secure Web Services
Workshop (2005).

14. Maniatis, P., Baker, M.: Secure history preservation through timeline entanglement.
Technical Report arXiv:cs.DC/0202005, Computer Science department, Stanford
University, Stanford, CA, USA (2002).

15. Maniatis, P.: Historic Integrity in Distributed Systems. PhD thesis, Computer Science
Department, Stanford University, Stanford, CA, USA (2003).

16. Goodrich, M., Tamassia, R.: Efficient authenticated dictionaries with skip lists and
commutative hashing. Technical report, Johns Hopkins Information Security Institute
(2000).

17. Goodrich, M., Tamassia, R., Schwerin, A.: Implementation of an authenticated dictionary
with skip lists and commutative hashing (2001).

18. Bonnecaze, A., Liardet, P., Gabillon, A., Blibech, K.: A Distributed time stamping scheme.
Proc. of the IEEE conference on Signal Image Technology and Internet based Systems
(SITIS ’05), Cameroon (2005).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

