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Abstract. Time stamping is a cryptographic technique providing us with a 
proof-of-existence of a message/document at a given time. Several 
timestamping schemes have already been proposed [1-10]. In this paper, we 
first define a new timestamping scheme which is based on skip lists [11]. Then, 
we show that our scheme offers nice properties and optimal performances.  

1   Introduction 

Timestamping is a technique for providing proof-of-existence of a message/document 
at a given time. Timestamping is mandatory in many domains like patent 
submissions, electronic votes or electronic commerce. Timestamping can ensure non-
repudiation. Indeed, a digital signature is only legally binding if it was made when the 
user's certificate was still valid, and a timestamp on a signature can prove this. Parties 
of a timestamping system are the followings: 

Client: forms the timestamping request which is the digest of the document to be 
timestamped. The client computes this digest by using a well known one-way2 
collision-free3 hashing function. Submitting the digest of the document instead of the 
document itself preserves the confidentiality of the document. 

TimeStamping Authority (TSA): receives the timestamping request at time t and 
issues the timestamp. The timestamp is a proof that the digest was received at time t. 
The TSA produces the timestamp according to a timestamping scheme. 

Verifier: verifies the correctness of the timestamp by using the verification scheme 
corresponding to the timestamping scheme which was used to produce the timestamp. 

Most of the existing timestamping schemes are linking schemes. Linking schemes 
were introduced by Haber and Stornetta [7]. Such schemes significantly reduce the 
scope of operations the TSA has to be trusted for. Basically, they work as follows: 

During a time interval which is called a round, the TSA,  

                                                           
1 This work was supported by the Conseil Général des Landes and the French 
ministry for research under ACI Sécurité Informatique 2003-2006, Projet CHRONOS. 
2 one-way means that no portion of the original document can be reconstructed from the digest 
3 collision-free means that it is infeasible to find x and x’ satisfying h(x) = h(x’)  
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- receives a set of timestamping requests, 
- aggregates the requests in order to produce a round token,  
- returns the timestamps to the clients. Each timestamp consists of the round 

token, the digest and the authentication path proving that the round token 
depends on the digest.  

Each round token is one-way dependent on the round tokens issued before. Round 
tokens are regularly published in a widely distributed media (a newspaper). After the 
publication it becomes impossible to forge timestamps (either to issue fake ones 
afterwards, or modify already issued ones), even for the TSA.  

In the case of partially ordered linking schemes [1][2][3], only timestamps from 
different rounds are comparable whereas in the case of totally ordered linking 
schemes [5][6][7], the temporal order of any two timestamps can be verified even if 
these two timestamps belong to the same round. Partially ordered schemes are 
generally simpler than totally ordered schemes.  However, as mentioned by Arne et 
al. [12], since totally ordered linking schemes allow us to compare two timestamps of 
the same round, longer rounds can be used. Using longer rounds enables reducing the 
amount of data to be published and the amount of data to be verified. 

The purpose of this paper is to define a new totally ordered scheme which is 
simpler than the existing ones and which shows optimal performances. Our scheme 
uses a skip list. A skip list is a data structure which was defined by Pugh [11].  

This paper is organized as follows:  section 2 reviews related works. Section 3 
presents our scheme. Section 4 deals with performance issues. Finally section 5 
concludes this paper. 

2   Related Works 

Our scheme can be compared to the following existing schemes: 
- Partially ordered timestamping schemes [1] [2][3] 
- Totally ordered timestamping schemes [5][6][7] 

Most of the existing partially ordered timestamping schemes are either based on 
Merkle trees (binary trees) [1][2] or on cryptographic accumulators [3]. With these 
schemes, only timestamps from different rounds are comparable. Moreover, schemes 
based on Merkle trees require the number of requests per round to be a power of 2 
whereas schemes based on accumulators generally introduce a cryptographic trapdoor 
due to the use of the RSA modulus.   

Existing totally ordered timestamping schemes are the simply linking scheme [7], 
the binary linking scheme [5] and the threaded authentication tree scheme [6]. The 
verification procedure for the simply linking scheme is costly (O(n), where n is the 
number of received requests) and requires that the TSA saves the entire chronological 
chain of timestamps.  

The binary linking scheme uses a simply connected authentication graph. In 
addition to its complexity, this scheme is less efficient in terms of time complexity 
than the Merkle tree scheme for both timestamping and verification due to additional 
concatenation operations.  



The threaded tree scheme can be seen as an improvement of the Merkle tree scheme. 
It is easier to implement than the binary linking scheme and it issues smaller 
timestamps. However, when compared to other schemes based on Merkle trees, it still 
has larger time complexity for both timestamping and verification due to the 
additional concatenation operations. 

3   A New Timestamping Scheme 

3.1  Skip lists 

W. Pugh introduced skip lists as an alternative data structure to search trees [11]. 
The main idea is to add pointers to a simple linked list in order to skip a large part of 
the list when searching for a particular element. While each element in a simple 
linked list points only to its immediate successor, elements in a skip list can point to 
several successors.  

Skip lists can be seen as a set of linked lists, one list per level (see figure 1). All 
the elements are stored at the first level 0. A selection of elements of level k is 
included in the list at level k+1. In probabilistic skip lists, if element e belongs to 
level k then it belongs to level k + 1 with probability p. In deterministic skip lists, if 
element e belongs to level k and respects some given constraints, then it belongs to 
level k+1. For example, in perfect skip lists (see figure 1), which are the most known 
deterministic skip lists, element e belongs to level i if its index is a multiple of 2i. 
Consequently, element at index 5 belongs only to the first level, while element at 
index 4 belongs to the three first levels. In figure1, B and E nodes are stored at all 
levels and called sentinel elements. The highest B node is called starting node St. The 
highest E node is called ending node Et. 

 
Fig. 1. Nodes contain the elements of the set {5,10,13,14,15,35,34}. Edges are the 
pointers. Numbers [0..3] are the levels. Numbers [1..7] are the indexes 

3.2  Timestamping scheme 

In [13], we defined an authenticated dictionary based on skip lists. An authenticated 
dictionary is a data structure that supports both update queries and tamper-evident 
membership queries. A tamper-evident membership query is of the form “does 
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element e belong to set S?”. If e belongs to S then the answer to such a query is a 
proof that e belongs to S. 

The purpose of this paper is to define a new totally linking timestamping scheme 
based on the dictionary we defined in [13]. Our scheme uses one append-only perfect 
skip list per round. Elements of the skip lists are the timestamping requests. Each new 
request is appended to the skip list.  Since we are dealing with perfect skip lists, each 
element of the skip list is associated to one or several nodes according to the index of 
the request. Each node has the following four properties: 

- its value, which is a timestamping request (digest) 
- its level, ranging from 0 to the highest level of the skip list  
- its index, which is its position in the skip list 
- its label, which is a hash value one way dependent on the labels of the 

previous nodes.  
Nodes associated to the same element have the same value and index. For 

example, let us consider nodes a and p in figure 2. They have the same index (20) and 
value (h20). Level of node a is 2 whereas level of node p is 0. Labels of nodes a and p 
are not shown but they are different from each other. 

The label of the starting node is the round token of the previous round whereas its 
value is the last request which was received during the previous round. Basically, our 
scheme works as follows: 

- Alice sends a timestamping request which is the digest h of a document. 
- The TSA appends h to the skip list. 
- The TSA immediately returns to Alice a signed acknowledgment containing 

the index of h in the skip list and the proof that h is inserted after the elements 
which are already in the skip list. We call this proof the head proof (see 
algorithm 1). 

- The TSA computes the label of each node associated to element h (see 
algorithm 2).  

- At the end of the round, the TSA inserts the last request which becomes the 
ending sentinel element. The label of the ending node is the round token. 

- The TSA publishes the round token and sends to Alice (and other clients) 
some additional information allowing her to prove that her request belongs to 
the round whose token has been published. We call this information the tail 
proof (see algorithm 3). The final timestamp consists of the digest h, the index 
of h, the head proof, the tail proof and the round token. 

- If a verifier, Bob, needs to check the validity of the timestamp then he has to 
verify that he can compute the round token from h, the index of h, the head 
proof and the tail proof.  Bob does the verification by processing algorithm 4. 

Figure 2 shows the insertion of h21 at index 21. h16 to h21 are requests (digests of 
documents). Numbers [16..21] are indexes. Labels are not shown. The arrows denote 
the flow of information for computing the labels (see algorithm 2). The head proof 
for h21 consists of the labels of the dark grey nodes (nodes q, o and a) (see algorithm 
1). 



 
Fig. 2. Insertion of h21

 
Fig. 3. Insertion of the ending element 

Figure 3 shows the insertion of the ending node (last request of the round). The 
arrows denote the flow of information for computing the labels (see algorithm 2). The 
label of the ending node is the round token. The tail proof for h21 consists of the value 
h22 and the labels of the light grey nodes (nodes r and x) (see algorithm 3). Note that 
the last request of the round is h25. Since it is the ending element, it belongs to all 
levels although 25 is not a multiple of 25. Figure 3 shows also the verification process 
for h21. Labels of thick nodes are computed during the verification process (see the 
next section 2.3 about verification). 

Algorithm 1 is used to compute the head proof (hp) of the newly inserted element 
h. S denotes the skip list. Function height(S) returns the highest level of the skip list S. 
Function last(i) returns the last node which was inserted at level i before the insertion 
of h. Function label(n) returns the label of node n. We define the plateau node of an 
element as the highest node associated to that element. Let us consider the nodes 
having an index strictly lower than the index of h. Among these nodes, for each 
level l, let us consider the node which has the greatest index. If it is a plateau node 
then its label belongs to the head proof. 
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Algorithm 1. Head Proof Computation 
1: hp := {}  
2: For i ranging from 0 to height(S) : 
3:  If last(i) is a plateau node then 
4:   append label(last(i)) to hp 

Figure 3 shows that the head proof of index 21 consists of the label of node a (that 
will be used during the verification to compute the label of node t), the label of node 
o (that will be used during the verification to compute the label of node z) and the 
label of node q (that will be used during the verification to compute the label of the 
ending node i.e. the round token). 

Algorithm 2 is used to compute the labels of the nodes associated to the newly 
inserted element h. Function value(n) returns the value of node n. Function left(n) 
returns the left node of node n. For example, the left node of node t is node a (see 
figure 3). Function down(n) returns the bottom node of node n. For example, the 
bottom node of node d is node c (see figure 3). hash is a one-way collision-free 
hashing function and || is the concatenation operation. Algorithm 2 applies to each 
node associated to the newly inserted element starting from the node at level 0 until 
the plateau node. 

Algorithm 2. Hashing Scheme 
1: If down(n) = null, {n is at level 0}: 
2:  If left(n) is not a plateau node then 
3:   label(n) := value(n).    {case 1} 
4:  Else 
5:   label(n) := hash (value(n) || label(left(n)))  {case 2} 
6: Else : 
7:  If left(n) is not a plateau node then 
8:   label (n) := label(down(n))   {case 3} 
9:  Else 
10:   label(n) := hash(label(down(n))||label(left(n))) {case 4} 

Let us consider node r in figure 3 (index 24, value h24 and level 0) and node e 
(index 23, value h23 and level 0). The label of node r is equal to the hash of the value 
of node r (h24) concatenated to the label of node e (case 2). Now, let us consider node 
s (index 24, value h24 and level 1) and node d (index 22, value h22 and level 1). The 
label of node s is equal to the hash of the label of node r concatenated to the label of 
node d (case 4). Let us consider also node b (index 21, value h21 and level 0) and 
node p (index 20, value h20 and level 0). Node p is not a plateau node, so the label of 
node b is equal to its value h21 (case 1). Finally, let us consider node d (index 22, 
value h22 and level 1) and node c (index 22, value h22 and level 0). The label of node 
d is equal to the label of node c (case 3). 

Algorithm 3 is used to compute the tail proof (tp) of elements which were inserted 
during the round. Function right(n) returns the right node of node n. For example, the 
right node of node d is node s (see figure 3). Function top(n) returns the node on top 
of node n. For example, the top node of node s is node t (see figure 3). Computation 



of the tail proof of element h starts from the plateau node associated to element h (in 
algorithm 3, n is initialized to the plateau node of element h). 

Algorithm 3. Tail proof computation 
{n is initialized to the plateau node of the element} 
1: tp := {} 
2: While right(n) != null : 
3:  n := right(n) 
4:  if down(n) = null then 
5:   append value(n) to TP 
6:  Else  
7:  append label(down(n)) to TP 
8:  While top(n) != null : 
9:   n: = top(n) 

Figure 3 shows that the tail proof of element h21 consists of h22 (that will be used 
during the verification to compute the label of node c), the label of node r (that will 
be used during the verification to compute the label of node s) and the label of node x 
(that will be used during the verification to compute the label of node y). 

3.3  Verification scheme 

We call the traversal chain of element h the smallest sequence of labels that have 
to be computed from h in order to determine the round token (label of the ending 
node Et). An example of such a chain is given by the labels of the thick nodes in 
Figure 3. They represent the traversal chain of element h21. The final timestamp 
consists of the digest h, the index of h, the head proof of h, the tail proof of h and the 
round token. It contains all the necessary information to compute the traversal chain 
of h. The verification process succeeds if the last label of the computed traversal 
chain is equal to the round token. If not, the verification fails. 

Algorithm 4 describes the verification process. Regarding that algorithm, we need 
to define the following functions: 

- height(index)4 that returns the level of the plateau node at position index 
- leftIndex(index, level)5 that returns the index of the left node of node of index 

index and level level 
- hasPlateauOnLeft(index, level)6 that indicates if the node of index index and 

level level has a plateau node on its left. 
- getNext() that extracts the next label from the tail proof, 
- getPrec() that extracts the next label from the head proof, 

                                                           
4 Since we are dealing with perfect skip lists, the height h of any element can be computed 
from its index i : i = 2h * k where HCF(2, k) = 1. 
5 Since we are dealing with perfect skip lists, the left node of a node of index i and level l has 
an index j = i − 2l. 
6 Consider node n of index i and level l. Consider k such that i − 2l = k * 2l. Since we are 
dealing with perfect skip lists, if HCF(2,k) = 1 then the left node of n is a plateau node. 



- getNextIndex(index)7 that returns the index of the node whose label is the next 
label  to be extracted by getNext(). That index can be computed from index. 

In algorithm 4, h denotes the request and ih the index of h (included in the 
timestamp). token denotes the round token included in the timestamp. Variable label 
denotes the label of the current node in the traversal chain. It is initialized to h. 

As we can see, the index of the request in the skip list is a parameter of 
algorithm 4. If the TSA would lie on the index of the request, then the verification 
would fail since it would not be possible to compute the labels of the nodes belonging 
to the traversal chain. Since the head proof is returned as a signed acknowledgement 
immediately after the request was received, the TSA cannot reorder elements in the 
skip list even before publishing the round token. 

Algorithm 4. Verification process 
1 : {h is the request, ih the index of h} 
2 : label := h 
3 : index := ih
4 : level := 0 
5 : While TP != {} 
6 :  For i from level to height(index) : 
7 :   If hasPlateauOnLeft(index, i) then 
8 :    If leftIndex(index, i) < ih then 
9 :     label := hash(label||getPrec()) 
10:    If leftIndex(index, i) ≥ ih then 
11:     label := hash(getNext()||label) 
12:  level := i. 
13:  index := getNextIndex(index). 
14 : While HP != {} : 
15 :  label := hash(label||getPrec()). 
16: If label = token then return TRUE 
17:Else return FALSE 

Figure 3 shows the verification process for h21 (ih21 = 21). Labels of thick nodes are 
computed during the verification process. Variable label is initialized to h21. Initial 
node of level 0 and index 21 is node b. Index of left node of node b is 21-20 (=20). 
Left node of node b is not a plateau node. Therefore, label of node b is equal to the 
value h21 contained in variable label. Node b is a plateau node. Therefore, the next 
node processed by algorithm 4 is node c of index 21+20 (=22) and of level 0. Index of 
left node of node c is 22-20 (=21). Left node of node c is a plateau node. Therefore, 
label of node c is equal to the hash of the first label extracted from the tail proof 
(value of node c) concatenated to the label of node b (hash(h22||h21)). Node c is not a 
plateau node. Therefore, the next node processed by algorithm 4 is node d of the 
same index 22 and of level 0+1 (=1). Left node of node d is not a plateau node.  
Therefore, label of node d is equal to label of node c (hash(h22||h21)). Node d is a 
plateau node. Therefore, the next node processed by algorithm 4 is node s of index 

                                                           
7 Since we are dealing with perfect skip lists, the next index j can be computed from the 
current index i: j = i+2h, where h is the height of the element at position i. 



22+21 (=24) and of level 1. Index of left node of node s is 24-21 (=22). Left node of 
node s is a plateau node. Therefore, label of node s is equal to the hash of the second 
label extracted from the tail proof (label of node r) concatenated to the label of node 
d. Node s is not a plateau node. Therefore, the next node processed by algorithm 4 is 
node t of index 24 and of level 2. Index of left node of node t is 24-22 (=20). Left 
node of node t is a plateau node. Therefore, label of node t is equal to the hash of the 
label of node s concatenated to the first label extracted from the head proof (label of 
node a). Node t is not a plateau node. Therefore, the next node processed by 
algorithm 4 is node u of index 24 and of level 3. Left node of node u is not a plateau 
node. Therefore, label of node u is equal to label of node t. Node u is a plateau node. 
Therefore, the next node processed by algorithm 4 is the node of index 24+23 (=32) 
and level 3. Note that in figure 3, there is no node of index 32. In fact, everything 
works as if 32 was the index of the ending element. Consequently, the next node is 
node y. Left node of node y is node u which is a plateau node. Index of left node is 
32−23 (=24). Therefore, the label of node y is equal to the hash of the third (and last) 
label extracted from the tail proof (label of node x) concatenated to the label of node 
u. Since node y is not a plateau node, the next node processed by algorithm 4 is the 
node of index 32 and level 4 i.e. node z. Index of left node of node z is 32-24 (=16). 
Left node of node z is a plateau node. Therefore, label of node z is equal to the hash 
of the label of node y concatenated to the second label extracted from the head proof 
(label of node o). Since node z is not a plateau node, the next node processed by 
algorithm 4 is the node of index 32 and level 5 i.e. the node on top of node z i.e. the 
ending node. Index of left node of the ending node is 32-25 (=0). Left node of the 
ending node is a plateau node. Therefore, label of the ending node is equal to the hash 
of the label of node z concatenated to the last label extracted from the head proof 
(label of node q). Since there is no more labels to extract, neither from the tail proof 
nor from the head proof, Algorithm 4 compares the last computed label to the round 
token included in the timestamp. If the two labels are equal then the verification 
succeeds. If not, the verification fails. 

4   Performances 

We have implemented a prototype of our time-stamping scheme. We present the 
performances of our prototype in terms of space complexity. We focus on the number 
of hashing operations which are necessary to timestamp n documents (figure 4), and 
on the size of the timestamps (figure 5). In both figure 4 and figure 5, the X-axes 
stands for the number of requests. In figure 4, the Y-axis denotes the number of 
hashing operations made by the timestamping system whereas in figure 5, it denotes 
the number of digests included in the timestamps. From these two figures, we can see 
that the number of hashing operations is O(n) and the number of digests included in 
the timestamps is O(lg(n)). In fact, our scheme has the same space complexity than 
the most efficient schemes used for timestamping (Merkle trees, threaded tree 
scheme, binary linking scheme…). However, compared to the binary linking scheme 
and to the threaded authentication tree scheme, our timestamping scheme has a 
smaller time complexity both for timestamping and verification. Indeed, our scheme 



needs as many concatenation operations as hashing operations, whereas binary 
linking scheme and threaded tree scheme need at least twice as many concatenation 
operations as hashing operations. Moreover, our scheme avoids the drawbacks of 
binary structures and accumulator systems. 

Finally, let us mention that we could also compare our scheme to existing 
authenticated dictionary based on skip lists [10][14][15][16][17]. The reader can refer 
to [13] for such a comparison. 
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5   Conclusion 

In this paper, we define a new totally ordered linking scheme based on skip lists. Our 
scheme offers better performances than existing totally ordered timestamping 
schemes. Moreover, it is easy to implement.  

Our scheme is for a single server TSA. The main drawback of single server TSAs 
is that they are vulnerable to denials of service. In [18], we suggest some directions to 
implement a multi-server timestamping system. The main idea used in [18] is to 
randomly choose k servers among n. In a future work, we plan to develop a 
distributed version of our scheme based on skip lists, which would use this concept of 
k among n. 
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