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ABSTRACT 

The accuracy of rainforests classification is generally 
improved by the input of multisensory data since complex 
vegetation type identification benefits from complementary 
information. However, in some cases, multisource fusion can 
also deteriorate accuracy when irrelevant sources are added. 
Thus, we introduce a fusion method for classes “in 
difficulty”. Our method outperforms the classical global 
approach consisting in performing fusion for all classes. 
Moreover, the fusion processing time can significantly 
decrease when several classes are put aside. This operational 
method can be used effectively to enhance accuracy and 
processing speed when analyzing the wealth of information 
available from remote sensing products. 

Index Terms— Vegetation mapping, image 
classification, support vector machines, multisensory 
imagery, data fusion

1. INTRODUCTION 

Today, an increasing number of sensors of greater diversity 
are available to the remote sensing community. Such a 
variety of spectral, spatial and temporal resolutions has very 
useful complementary properties and can therefore 
outperform conventional single-source approaches [1]-[9].  

A range of fusion algorithms and schemes have been 
proposed and compared over the past two decades which 
highlights that multisource fusion is a key research topic. To 
our knowledge, the first attempt is [1] where fusion of 
visible Landsat MSS bands with infrared Landsat MSS 
bands is performed to map 11 classes in an agricultural 
landscape of New South Wales (Australia) using a 
probabilistic scheme that employs a global membership 
function and the Dempster’s orthogonal sum combination 
rule. Optical Landsat MSS data and ancillary data 
(elevation, slope and aspect) are fused in [2] to map 10 
classes in a montane forest of Colorado (USA) using the 
minimum Euclidean distance, the maximum likelihood 
classifier (MLC) and the minimum Mahalanobis distance. 
The first comparative fusion of both optical and SAR data is 
probably [3] which used optical Daedalus 1268 ATM data 
with “PLC-band, fully polarimetric NASA/JPL SAR sensor” 

data to map 6 classes in an agricultural landscape of Feltwell 
(UK) using structured-Neural Networks (NN), fully 
connected-NN and the k-nearest neighbors. Then, [4] fused 
optical Landsat TM data with ERS-1 SAR data to map 12 
classes in an anthropogenic area of Lisbon (Portugal) using 
MLC, NN, the majority voting and the logarithmic opinion 
pool. In [5], optical Landsat TM data and ERS-1 SAR data 
are fused to map 16 classes in an agro-forest landscape of 
Gothenburg (Sweden) using MLC, NN and the sequential 
maximum a posteriori. Next, [6] fused optical Landsat TM 
data with ancillary data (elevation, slope and distance to 
water body) to map 14 classes in an agricultural landscape 
of Oklahoma (USA) using both C4.5 algorithm and support 
vector machines (SVM). Two optical IKONOS images are 
merged in [7] to map 6 urban units in Reykjavik (Iceland) 
using NN and a fuzzy decision rule. The ability of MLC, 
DT, “boosted-DT” and SVM to fuse optical Landsat-5 TM 
and SPOT-5 data with Envisat ASAR and ERS-2 data is 
compared in [8] over an agricultural landscape of Bonn 
(Germany) where 8 classes occur. More recently, [9] fused 
optical SPOT-2 data with ALOS/PALSAR data to map 6 
classes in an urban/peri-urban area of Hochiminh (Vietnam) 
using MLC and SVM. 

The previously mentioned fusion algorithms 
comparative studies mainly focus on simple anthropogenic 
structures. According to the results of these comparisons, the 
best contemporary fusion algorithm is arguably SVM. 
Although the classification scheme proposed by [8] is quite 
simple to implement and adapted to classification of 
different nature data, its main drawback is that fusion is 
performed for all classes globally. Indeed, for some classes, 
multisource fusion can also deteriorate accuracy found in 
monosource when a non-relevant source is used [1]. This 
paper aims to assess, over a structurally complex model, an 
extension of this method: the “fusion for classes in 
difficulty”. 

2. MATERIAL AND METHODS 

2.1. Study site and ground data collection 

This study focuses on tropical rainforests which is a subject 
of great interest to scientists around the world. In witness 
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thereof, United Nations General Assembly declares 2011 as 
the International Year of Forests. Here, we argue that 
multisource image fusion is critical for classifying complex 
structures since each complementary source can contribute 
to the classification success. Optical, infrared, SAR, digital 
elevation model (DEM) and multitemporal data can 
therefore be useful for species identification according to 
their physico-chemical, anatomical, structural, ecological 
and phenological properties respectively. 

The present study is conducted in French Polynesia 
(South Pacific) and more precisely on the island of Moorea 
(140 km² with a highest summit reaching 1,207 m) 
(Figure 1) where 17 vegetation types occur. 

Fifteen 125 m² circular regions of interest are selected 
and geolocalized with a handheld Trimble® GeoXHTM GPS 
for each vegetation type (ca. 1/2,000 of the island area is 
sampled in total). Half of this area is used for classification 
training and half for validation. Balance data sets are 
systematically used to avoid under- or over-representation 
problems [10]. 

2.1 Remotely sensed data 

The experiment is carried out on three data types, namely an 
optical source, a SAR source and a digital elevation model 
(DEM), projected in the WGS 84 – UTM 6 South 
coordinate system (Figure 2). 

2.2.1. Optical spectral data 
For the first image type, we selected a four-bands and 
0.60 m-resolution Quickbird scene from November 9, 2006. 
It is orthorectified using the cubic convolution 
approximation technique, more suitable than nearest 
neighbor and bilinear interpolation techniques [11]. The 
near infrared band is useful for vegetation studies [12] and 

very high spatial resolution is critical for plant species 
discrimination [13], [14] using texture metrics for example. 
2.2.2. Optical textural data 
Eight gray-level co-occurrence matrix (GLCM) texture 
metrics are extracted from these data: mean, variance, 
homogeneity, contrast, dissimilarity, entropy, second 
moment and correlation [15]. They are calculated on the 4 
bands and in 3x3, 9x9 and 15x15 pixels window sizes. To 
prevent classification from the Hughes phenomenon, we 
select the most relevant band and window size by calculating 
the mean Jeffries-Matusita separability for each 
combination. Separability may be an adapted metric when 
using SVM since they do not aim to describe classes as 
conventional approaches but to separate them [16]. The 
winning combination is the texture calculated on the green 
band in a 15x15 pixels window. Since GLCM texture 
metrics have a strongly different nature from the spectral 
information, they are considered as a separated source as in 
[6]. 

2.2.3. SAR data 
For the second image type, two 2.75 m-resolution StripMap 
TerraSAR-X ©DLR (2010) acquisitions were programmed 
over Moorea on April 30, 2010 in VV-VH polarizations and 
on August 28, 2010 in HH-HV polarizations. The scenes are 
geometrically corrected using a 5 m-resolution DEM. 
Speckle noise is reduced by using the enhanced Frost filter 
in a 7x7 pixels window, showing the best mean Jeffries-
Matusita separability after several tests.  

2.2.4. DEM-extracted data 
The third data set is the DEM produced from a 

Figure 1. Presentation of the Moorea island and localization of the 
255 collecting points. 

Quickbird 
R: Red, G: Green, B: Blue  

TerraSAR-X ©DLR (2010) 
R: Xvv, G: Xhv, B: Xhh  

DEM 
R: WI, G: Slope, B: Elevation 

Fusion for classes in difficulty 
Colour correspondence in table 2

Figure 2. Composite illustrations of the source images and 
classification with the “fusion for classes in difficulty” method on 
a subscene centred on the mont Tamarutoofa. 
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photogrammetric restitution at a scale of 1/5000 based on 
aerial photography from 1997 at a scale of 1/15000. With a 
5 m-resolution, it enables extraction of topographical 
variables typically impacting plant distribution in montane 
ecosystems: elevation, slope, aspect, windwardness and a 
wetness index (WI) [17]. The latter was used as an index of 
water drainage with low WI values representing convex 
positions like mountain crests and with high WI values 
representing concave positions like coves or hillslope bases. 
It is a function of the slope angle  (in radians) and the 
specific catchment area (As) expressed as m² per unit width 
orthogonal to the flow direction (1). 

= As
indexWetness

tan
ln (1)

2.3. Fusion of support vector machines 

Machine learning algorithms such as SVM have the 
advantage to be non-parametric and to be able to weight 
heterogeneous sources according to their relevance [2]. 
SVM is introduced by [18] and extensively described by 
[19]-[21]. It is arguably one of the most successful 
algorithms for multisource fusion [6], [8], [9]. SVM consists 
in projecting vectors into a high dimension feature space by 
means of a kernel function then fitting an optimal 
hyperplane that separates classes using an optimization 
function. 

We compare the following two fusion schemes based on 
SVM (Figure 2): 

- method in [8]: a single SVM is trained on each source 
separately and a rule image is generated for each class from 
each source. Then an additional SVM is trained on all rule 
images to perform the fusion; 

- “fusion for classes in difficulty”: this fusion method 
starts from the observation that, for some classes, 
multisource fusion can also deteriorate accuracy found in 
monosource when a non-relevant source is added [1]. Thus, 

the general principle is the same but fusion is performed 
only when no single source is able to classify satisfactorily a 
class or a set of classes, i.e. when the condition (2) is 
fulfilled: 

min(PAsource i;UAsource i) < min(PAfusion;UAfusion) (2)

wherein i  [1,4], PA is the producer accuracies and UA the 
user accuracies. Should the opposite occurs, the class is not 
considered as “in difficulty”, the spatial distribution of the 
considered class is the one found in the most accurate single-
source classification (the source having the best 
min(PA;UA)) and the class is expelled from fusion. If a 
pixel belongs to several classes with this process, the class 
with the best min(PA;UA) wins. 

3. RESULTS 

Regarding fusion methods, accuracies are improved when 
multiple sources are used for classification (Table 1). The 
experimental results clearly show the positive impact of 
complementary multisensory imagery for forest 
classification, especially with “fusion for classes in 
difficulty”. With the latter, 7 classes are considered as “in 
difficulty” and the 10 other classes are classified from a 
single adapted source (Table 2). For example, DEM-
extracted data are adapted to classify the coastal and high-

Table 1. Accuracies (%) achieved by SVM using different sources 
(OA refers to the overall accuracy based on the mean of accuracy 
of each class). 

Sources OA Kappa 

1. Optical spectral data 62.7 60.5 

2. Optical textural data 50.3 47.3 

3. SAR data 36.7 32.7 

4. DEM-extracted data 64.2 62.0 

All with method in [8] 67.0 64.9 

All with “fusion for classes in difficulty” 78.2 76.9 

Table 2. Vegetation types occurring on Moorea and source from 
which the classification is based (F refers to “fusion for classes 
in difficulty”; source # refers to table 1). 

Classes (colour in figure 2) Source PA UA 
Plantations 

Pinus caribaea 1 72.1 67.1 
Falcataria moluccana (coral) 1 79.0 46.1 
Cocos nucifera F 90.4 90.4 

Coastal vegetation 
Typha domingensis 4 100 100 

Low- to mid-elevation mesic to moist vegetation 
Metrosideros collina (dark green) F 83.1 86.3 
Casuarina equisetifolia 1 90.1 91.0 
Dicranopteris linearis 1 98.2 93.0 
Leucaena leucocephala F 80.3 79.2 
Syzygium cumini F 73.9 60.7 
Miscanthus floridulus 1 86.0 88.4 

Low- to mid-elevation moist to wet vegetation 
Neonauclea forsteri (magenta) F 61.7 41.3 
Aleurites moluccana (white) 2 92.5 86.5 
Inocarpus fagifer F 50.0 39.4 

High-elevation vegetation 
Montane cloud forest (cyan) 4 95.3 96.4 
Summit shrubland 4 98.9 94.8 

Ubiquitous 
Hibiscus tiliaceus (green) 3 24.6 47.3 
Spathodea campanulata F 55.2 70.0 
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elevation vegetation whereas fusion performs worse. Indeed 
the addition of non-relevant sources acts as a bias in the 
classification process. “Fusion for classes in difficulty” main 
advantage is to not be too global and to select classes which 
can benefit from multiple information sources. 

The fusion processing time has a quadratic relation with 
the number of classes considered for SVM fusion. As a 
result, by limiting the number of classes in the fusion, 
processing time can be significantly reduced. For example, 
with Q=7 (for the “fusion for classes in difficulty”), fusion 
processing time is ca. a sixth of the computational time with 
Q=17 (for the method in [8]). 

4. CONCLUSION 

Two fusion schemes based on SVM were compared for 
classification of optical, SAR and ancillary data on a 
structurally complex tropical rainforest. We introduced an 
operational method consisting in fusing these data only for 
classes being “in difficulty”. Our method outperformed the 
classical global approach in term of accuracy and reduced by 
a factor 6 the fusion processing time in our study case. 
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