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Evaluation of Fuzzy Partitions

Pascal Matsakis,* Serge Andréfouët† and Patrick Capolsini†

The aim of this study is the development of tools dedi- stage, although commonly overlooked (Hammond and
Verbyla, 1996). Evaluating a partition generally consistscated to fuzzy partition evaluation in the field of satellite

image classification. While a traditional crisp partition of comparing it with a control partition and measuring
only provides qualitative information, a fuzzy partition rep- the degree of association of two variables that may be
resents a large amount of quantitative information. How- binary, qualitative, ordinal, or quantitative. Traditional
ever, such a partition is often evaluated after “defuzzifica- products of image classification are crisp partitions (i.e.,
tion” (i.e., it is reduced to a crisp partition). The analysis of hard, ordinary, classical partitions), thus only the case of
a traditional confusion matrix, describing the similarities qualitative variables has really held interest. The litera-
between the computed crisp partition and a control par- ture on the analysis of confusion matrices is quite abun-
tition, can then be performed. This approach is rather dant. It generally describes methods that summarize the
drastic and is far from satisfactory because the quantita- matrices by a single index, hence allowing different clas-
tive information is lost after the defuzzification. Some sifications to be comparable (Congalton, 1991; Gong and
methods do not require preliminary defuzzification, but Howarth, 1990; Ma and Redmond, 1995; Zhuang et al.,
they are not adequate to evaluate nonprobabilistic fuzzy 1995). This abundance of literature is justified by the nu-
partitions (i.e., fuzzy partitions such that the sum of the merous issues related to accuracy assessment, issues for
membership degrees is not necessarily equal to 1). To solve which clarifications (Stehman, 1997; Stehman and
these issues, we consider the evaluation of any fuzzy par- Czaplewski, 1998; Congalton and Green, 1999; Stehman,
tition l as the evaluation of a still fuzzy new partition: 2000) are still welcome and necessary after three de-
the plausibilistic closure of l. This approach comes from cades of satellite image classification.
the theory of evidence. It allows definition of a set of To complicate even more this domain, the last de-
original tools (plausibility matrices, credibility matrices, cade has seen the emergence of new approaches and
and overlap degrees) dedicated to fuzzy partition evalua- products (i.e., fuzzy partitions) intended to overcome the
tion. A concrete application illustrates our theoretical intrinsic limitations of crisp partitions (e.g., Bezdek and
work and a tutorial is provided in appendix. Elsevier Pal, 1992; Key et al., 1989; Wang, 1990; Simpson and
Science Inc., 2000 Keller, 1995; Bastin, 1997; Raffy, 1997; Smith et al.,

2000). Indeed, traditional crisp partitions may be inap-
propriate for representing heterogeneous, complex areas,

INTRODUCTION and fuzzy partitions have proven useful to postclassifica-
tion processing, the detection of high-risk confusionThe evaluation of the accuracy of a partition arises natu-
zones, and the correction of flagrant misclassificationrally in the field of image classification. It is a mandatory
(Harris, 1985; Maselli et al., 1994; Andréfouët et al.,
2000). They also open up new prospects for describing
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ducing the evaluation of a fuzzy partition to the evalua- atoll in French Polynesia. Mathematical proofs are pro-
tion of a crisp one is unsatisfactory because it implies the vided in the appendix, and a tutorial guides the reader
loss of all quantitative information. through the computations required by the analysis.

The approaches suggested for fuzzy partition evalua-
tions are reviewed by Foody (1996) and summarized

BASIC NOTIONS ANDhereafter. Indices derived from fuzzy set theory were
PRELIMINARY DEFINITIONSproposed by Gopal and Woodcock (1994), but only to

compare a crisp partition with a fuzzy control partition. Within this paper, N and C denote two integers such
Entropy, or relative entropy, was proven useful to fuzzy that N>C>2, and E denotes a set of N elements num-
partition evaluation (Finn, 1993; Maselli et al., 1994; bered from 1 to N: E5{ej}jP1 . . . N. Typically, E is a satellite
Foody, 1995; Zhang and Kirby, 1997), but the control image and each ej is a pixel. To help the reader with the
partition had to be crisp (i.e., the target had to be quite theoretical developments below, a tutorial example in
homogeneous). Ultimately, for heterogeneous areas, the Appendix A illustrates every definition and computation
evaluation of a fuzzy partition could be based on a com- scheme.
parison with a fuzzy control partition (Gopal and Wood- It is also useful to redefine some mathematical sym-
cock, 1994; Deer, 1996). In this case, measures of close- bols. For instance, the expression “∀iP0 . . . N,
ness between fuzzy partitions have been proposed. They ∃jPN . . . 2N\N5(i1j)/2” means that for any element
generally come from information theory, which provides (∀) i of 0 . . . N (i.e., for any integer i greater than or
measures of closeness between two probability distribu- equal to 0 and less than or equal to N), there exists at
tions (Higashi and Klir, 1983; Foody, 1995; Zhu, 1997; least one element (∃) j of N . . . 2N such that (\) N
Dubois and Prade, 1999). Indeed, in remote sensing, the equals half of i1j. Finally, for any set A, |A| denotes the
fuzzy partitions were usually probability distributions. number of elements of A.
For each pixel, the sum of the membership degrees
equals 1, because membership degrees closely match

Crisp Partitionsland cover proportions inside a pixel (Foody and Cox,
1994). In some cases, however, fuzzy partitions are not Definition 1 (Fig. 1a and Appendix A1)
probabilistic. The sum of membership degrees derived A crisp C-partition of E, or crisp partition into C classes
from neural networks may not total 1 (Foody, 1996). Un- of E is a C-tuple (Ei)iP1 . . . C of subsets of E such that [see
certainty measures different than probabilities can be se- Eqs. (1), (2), and (3)]:
lected to take advantage of other mathematical tools and

∪iP1 . . . CEi5E (1)theories, such as possibility theory (Desachy et al., 1996;
Andréfouët et al., 2000; Foody, 2000). Then, probabilis- ∀iP1 . . .C, Ei?[ (2)
tic measures of closeness between fuzzy partitions, such

∀iP1 . . . C, ∀jP1 . . . C, i?j⇒Ei∩Ej5[ (3)as cross-entropy, are not necessarily adequate, and mea-
sures with a broader range of validity must be proposed. where [ is the empty set. Ei is the class i.

In this paper, we aim to consider the evaluation of This definition coincides with the standard mathe-
any fuzzy partition l, probabilistic or not. For this, we matical definition of a partition. Equation (2) states that
define a new fuzzy partition, the plausibilistic closure of each class contains at least one element of E. Likewise,
l. This new partition can be characterized independently Eqs. (1) and (3) state that each element of E belongs
of the model of uncertainty (i.e., probability, possibility, (entirely) to a class and does not belong (at all) to the
evidence) used for l. Our approach comes from the the- others.
ory of evidence (Dempster, 1967; Shafer, 1976). This
theory has been used in image classification for the con- Fuzzy Partitionsstruction of crisp and fuzzy partitions (Lee et al., 1987;

A pixel may cover more than one discrete land cover class.Peddle, 1995; Desachy et al., 1996), but not for their
Moreover, the land cover may be continuous. A crispevaluation, although “measures of closeness based on in-
partition cannot represent these facts. A fuzzy partitionformation uncertainty may be the most appropriate to
is a solution.use in classification evaluation” (Foody, 1996). First, the

required theoretical background and the fundamental Definition 2 (Fig. 1c and Appendix A1)
idea of plausibilistic closure are introduced. Then, three A fuzzy C-partition of E, or fuzzy partition into C classes
original tools for the evaluation of plausibilistic closure of E, is a C-tuple (li)iP1 . . . C of functions from E into [0,1]
are proposed: plausibility matrices, credibility matrices, such that [see Eqs. (4) and (5)]:
and overlap degrees. Eventually, an example illustrates

∀jP1 . . . N, ∃iP1 . . . C\lij.0 (4)how partitions of different types are evaluated and char-
acterized. The considered fuzzy partitions come from ∀iP1 . . . C, ∃jP1 . . . N\lij.0 (5)
probabilistic and possibilistic supervised fuzzy classifica-
tions of a SPOT HRV XS image of the rim of Tikehau where lij denotes the image of element ej of E by the
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Figure 1. Representation of crisp, fuzzy probabilistic and fuzzy possibilistic two-partitions of a set E containing five
elements {e, x, h, v, s}. The left part of each diagram gives the membership degrees in class A, and the right
part the membership degrees in class B. The lighter an element is, the higher its membership degree into the
considered class. Black stands for 0, white stands for 1. Vertical discontinuous lines symbolize the constraint:
maxilij51. Horizontal discontinuous lines symbolize the constraint: Ri lij51. A crisp partition is constrained in both
directions. A possibilistic partition doesn’t have any constraint.

function li. The fuzzy subset of E defined by li (Zadeh, Element ej of E is assigned to the class to which it be-
longs “the most” (i.e., the class that is the most probable,1965) is the class i.

li is the membership of E attached to class i, and lij or the most possible).
is the membership degree of ej in class i. If all the func-
tions li take their values in {0,1}, they define crisp sub- Plausibility and Credibility Measures
sets Ei of E (i.e., nonfuzzy, hard, ordinary, classical sub- This paper proposes new tools for the evaluation of fuzzy
sets of E), and Eqs. (4) and (5) respectively may be partitions. Their development is based on the theory of
rewritten as Eqs. (1) and (2). Hence, a crisp partition is evidence (Dempster, 1967; Shafer, 1976). Let V be the
a particular fuzzy partition. Krishnapuram and Keller set of choices possible to take a decision and let P(V) be
(1993) interpret lij as the possibility (Zadeh, 1978) that the set of all possible subsets of V. An event is an ele-
element ej of E belongs to class i (Krishnapuram and ment of P(V) (i.e., a subset of V). In particular, V is the
Keller, 1993; Barni et al., 1996; Krishnapuram and Kel- certain event and the empty set [ is the impossible
ler, 1996). According to this interpretation, a fuzzy parti- event. A basic probability function is a function m from
tion is actually a possibilistic fuzzy partition. On adding P(V) into [0,1] such that (see Eq. (8)]:
the condition “∀jP1 . . . N, RiP1 . . . C lij51” to Eqs. (4)

RAPP(X)m(A)51 and m([)50 (8)and (5), we obtain a probabilistic fuzzy partition (Defini-
tion 3), like that of Ruspini (1969) and Bezdek (1981). In the theory of evidence, a mass of belief m(A) is as-
Hence, a probabilistic fuzzy partition is a particular pos- signed to any set A. The total mass of belief to be dis-
sibilistic fuzzy partition. tributed amounts to 1. m(A) quantifies “the belief that

one commits exactly to A, not the total belief that oneDefinition 3 (Fig. 1b and Appendix A1)
commits to A” (Shafer, 1976). The uncertainty of the oc-The fuzzy C-partition l5(li)iP1 . . . C of E is known as
currence of event A is measured by means of two func-probabilistic if and only if [see Eq. (6)]:
tions: a plausibility measure Pl (also called upper proba-

∀jP1 . . . N, RiP1 . . . Clij51 (6) bility function) and a credibility measure Cr (also called
belief function, or lower probability function). They areFor any element j of 1 . . . N, the function from 1 . . . C
functions from P(V) into [0,1] such that [see Eqs. (9)into [0,1] that associates lij with any i is then a distribu-
and (10):tion of probability. lij may be interpreted as the probabil-

ity that element ej of E belongs to class i. ∀APP(X), Pl(A)5RBPP(X)\B∩A?[m(B) (9)

∀APP(X), Cr(A)5RBPP(X)\B,Am(B) (10)“Defuzzification” of a Fuzzy Partition
Pl(A) assesses the degree to which the available informa-It is usual practice to associate a crisp partition to any
tion does not contradict A, and Cr(A) assesses the degreefuzzy partition.
to which this information supports A. In the field of im-

Definition 4 (Appendix A1) age classification, the decision to make is “to which class
Let l5(li)iP1 . . . C be a fuzzy C-partition of E. We say that should this pixel be assigned?” V is therefore the set of
a crisp C-partition m5(mi)iP1 . . . C of E is the result of a classes 1 . . . C, and each of the uncertainties we are
“defuzzification” of l if and only if [see Eq. (7)]: interested in concerns the attribution of the considered

pixel to a given class. So, only the values (Cr({i}) and∀iP1 . . . C, ∀jP1 . . . N, mij51⇒lij5maxkP1 . . . clkj (7)
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Figure 2. Levels of fuzzy three-partition l. lev is a new fuzzy partition.

Pl({i}), where i belongs to 1 . . . C, are relevant, and not Let’s define l*ij such that l*ij is the proportion of ele-
the entire set of combinations of classes. A simple nu- ments of E (i.e., percentage of pixels in the image E)
merical example is provided in Appendix A2. that have a membership degree in level 1 lower than lij

[see Eq. (12)]:

l*ij 5|{,P1 . . . N\lev1,,lij}|/N (12)PLAUSIBILISTIC CLOSURE AND
RELATED TOOLS

It will be assumed, even if this point actually needs some
Within this section, l5(li)iP1 . . . C denotes a fuzzy C-parti- clarifications (Matsakis, 1998), that the l*ij values define
tion of E. a fuzzy C-partition of E. We now propose consideration

of the evaluation of l as that of this new partition l*.
Three main points justify this proposition.Plausibilistic Closure

Partitions can be crisp or fuzzy, possibilistic or probabi- 1. In the field of satellite image classification, evalu-
listic, and of various origins. Moreover, a fuzzy partition ating a partition generally consists of comparing it
represents a huge amount of quantitative information. to a control partition. So, let l and m be two
Only a fraction of this information may be relevant. The fuzzy C-partitions of E, each being of any origin.
plausibilistic closure of l is a partition that stems from l may result from a probabilistic fuzzy segmenta-
the search of l’s intrinsic qualities, without any external tion or from a probabilistic fuzzy classification, or
references. It breaks free from the nature of the data from the drawing of control zones by an analyst.
and focuses on the most significant information. The key The same applies for m. Therefore, two values like
notion is the notion of levels, defined later. lij and mij, for given integers i and j, are not neces-

sarily of the same nature, and they should not beDefinition 5 (Fig. 2 and Appendix A3)
compared directly. On the other hand, l*ij and m*ijLet us consider an element j of 1 . . . N. There is at
are both ratios. Considering the comparison of lleast one permutation (arrangement) s of 1 . . . C such
and m as that of l* and m* avoids dealing with par-that: ∀kP1 . . . C21, ls(k)j>ls(k11)j. Let us assume then,
titions of different nature.for any element of k of 0 . . . C21 [see Eq. (11)]:

2. Typically, any element ej of E is associated to a
levkj5ls(k11)j (11) vector of a given Euclidean space. In the case of

a SPOT-HRV X image, for example, the space isThese values levkj are independent of the choice of s (if
generally the (XS1, XS3, XS3) radiometric space.several permutations answer the expressed criterion).
In the same way, any class i is associated to a pro-The levk functions map E into [0,1], thus defining the
totype (it can be a vector of the previous space).levels of partition l. levk is level k.
A distance dij then permits measuring the degreeThe formal definition 5 implies that for any pixel ej,
to which the vector associated to ej agrees withit is possible to sort the C values li51 . . . C,j per decreasing
the prototype of class i. The membership degreeorder and that the result is a new fuzzy partition, the
lij is deduced from this measure dij with l5u(d),partition lev. Note that the closer the level 1 is to level
where u denotes a decreasing function. It can be0 (in the sense of Hamming distance for instance, see
shown that l* is independent of the choice of uKlir and Yuan, 1995), the fuzzier the partition, the
(Matsakis, 1998). Therefore, considering the evalu-greater the conflicts, and the more uncertain the classifi-
ation of l as that of l* leads to evaluation of lcation. Conversely, the farther away level 1 is from level
according to its intrinsic qualities only.0, the crisper the partition, the wider the consensus, and

3. Let ej be a pixel of E. If one must assign ej tothe more certain the classification. Helpful measures of
one of the C classes, he would naturally choose tofuzziness are covered extensively in Dubois and Prade
assign it to the class i such that: lev0j5lij. It is ex-(1999). The self-analysis is carried out by referring to

level 1. pected that level 0 “gathers” most of the pixels;
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this point of view, which will be corroborated fur-
ther in the Application section. A huge amount of
information lies hidden within partition l: it is
quite usual to deal with 10, 15, or even 20 classes,
and as many levels. The new partition l* focuses
on the most significant information (Fig. 3).

The formal definition of the plausibilistic closure l*
of a partition l follows.

Definition 6 (Appendix A3)
Let l* be the fuzzy C-partition of E defined by (Eq. (13)]:

∀iP1 . . . C, ∀jP1 . . . N, l*ij 5|{,P1 . . . N\lev1,,lij}|/N
(13)

where l* is the plausibilistic closure of l.
Then, we define two measures, plausibility and cred-

ibility, associated with the plausibilistic closure.

Definition 7 (Appendix A4)
Let j be an element of 1 . . . N. There is at least one
permutation s of 1 . . . C such that [see Eq. (14)]:

∀kP1 . . . C21, l*s(k)j>l*s(k11)j (14)

Integer j is associated to two functions plj and crj from
Figure 3. Plausibilistic closure l* of a fuzzy 1 . . . C into [0,1] such as in Eqs. (15) and (16):
partition l (representation by levels). a denotes
the maximum membership degree in level 1 ∀iP1 . . . C, plj(i)5l*ij (15)
(a5maxj lev1j), and b denotes the minimum
membership degree in level 1. Any membership crj[s(1)]5l*s(1)j2l*s(2)j and ∀kP2 . . . C, crj[s(k)]50
degree lij greater than a is “set” to 1 (the (16)
proportion of elements of E that have, in level 1,
a membership degree lower than lij). Likewise, where plj(i) is the plausibility, according to l, that ej is a
Any membership degree lower than or equal to b member of class i, and crj(i) is the credibility, according
is “set” to 0. The other membership degrees are to l, that ej is a member of class i. It is independent of“stretched” between 0 and 1.

the choice of s.
Propositions 1 and 2 below (proofs given in the Ap-

pendices B and C) justify the terminology adopted inotherwise, the classification algorithm should be
Definitions 6 and 7. If the evaluation of l can be re-questioned. This is what justifies the “defuzzifica-
duced to that of l*, can the evaluation of l* be reducedtion” process. If ever class i was not the correct
in turn to that of a third partition, (l*)*, and so on? Prop-one, ej would then be assigned to class k such that
osition 1 answers this question and motivates the use oflev1j5lkj, and so on. Of course, level 1 is expected
the term closure (Definition 6). Proposition 2 justifiesto gather most of the “stray” pixels. Even though
the reference to the theory of evidence (Definition 7).consultation of lev2 or lev3 cannot be absolutely re-
Let us add that if l is crisp, then l*5l (i.e., a crisp parti-jected, there is no reasonable need to consult all

the lower levels. Changing l into l* expresses tion is the plausibilistic closure of itself) (Matsakis, 1998).

Figure 4. Two extreme cases of
fuzzy partitions, with poor and
high degree of overlapping
between the different levels.



Evaluation of Fuzzy Partitions 521

Figure 5. Overlapping construction is done using the plausibilistic closure of the considered partition. Each level
of l* is “reorganized”: its points are arranged in order of decreasing plausibilities. The graph on the right shows
for instance that, in level 2, about 20% of the elements of E receive a plausibility greater than 1/2. The overlap
degree of level 0 is quite high: in the upper triangular part, the grey zone delimited by ove0 is large. The overlap
degree of level 2 is lower, but not negligible.

Proposition 1 (Appendix A3) by the right partition. These examples show the struc-
tural differences that we intend to interpret using the

(l*)*5l* (17) tools presented hereafter. These tools quantify how the
levels of l overlap with the reference level lev1.Proposition 2 (Appendix A4)

Let j be an element of 1 . . . N. There is a basic proba- Definition 8 (Appendix A6)
bility function mj, defined on the set of the subsets of Let k be an element of 0 . . . C21 and let lev*k be level
1 . . . C11, such that (see [Eq. (18)]: k of partition l*. There is at least one permutation s of

1 . . . N such that ∀,P1 . . . N21, lev*ks(,)>lev*ks(,11). This∀iP1 . . . C, Plj({i})5plj(i) and Crj({i})5crj(i) (18)
permutation corresponds to an arrangement of decreas-

where Plj and Crj are respectively the plausibility and ing plausibilities of the points of level k. Now, let us con-
credibility measures associated with mj. sider the functions ovek from [0,1] into [0,1] such that

Next, we show through examples how the notion of [see Eqs. (19) and (20)]:
plausibilistic closure allow the development of tools dedi-

∀uP[0,1] u<1/N⇒ovek(u)5lev*ks(1) (19)cated to the evaluation of fuzzy partitions.
∀uP[0,1], ∀,P2 . . . N, (,21)/N,u<,/N⇒ovek(u)

Overlapping
5lev*ks(,) (20)Figure 4 illustrates the levels of two fuzzy partitions. The

opinion expressed by the partition on left side of the fig- ovek is independent of the choice of permutation s: it is
the overlapping of level k of l.ure is incomparably less ambiguous than that expressed

Table 1. Mean 6 Standard Deviation (in Digital Counts) of the Training
Zones in Each Class for the Three Wavebands XS1, XS2, and XS3 of
a SPOT-HRV Multispectral Image

Class N XS3 XS2 XS1

1. Deep water 503 7.3062.02 33.0866.88 95.24615.45
2. Hoa 299 8.0461.63 45.8568.11 89.5369.05
3. Kopara pond 44 19.7066.41 33.9564.31 49.2763.69
4. Reef flat 593 12.1065.04 59.67610.14 92.40610.73
5. Vegetation 417 86.4269.41 24.5063.68 43.2363.53
6. Conglomerate 122 87.8064.37 80.6665.99 96.0066.58
7. Soil 148 62.7066.21 46.9269.33 63.5768.45
8. Coral rubble 109 117.2968.32 131.00611.27 150.71610.15
9. Residual hoa 50 76.3468.58 72.6267.35 88.8266.94

10. Intertidal conglomerate 332 24.21614.18 36.8266.63 52.4966.74
11. Laguna 178 9.6961.49 78.8865.94 127.0965.08
12. Intertidal reef flat 279 71.80612.46 68.94610.66 79.8469.03
13. Intertidal coral rubble 126 41.22634.21 103.78628.09 133.75614.91

N is the number of training pixels. “Kopara” is a vernacular Polynesian name for microbial
mats. “Hoa” is the name for transversal spillways.
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Figure 6. Location of Tikehau
atoll. Location of the various
classes inside a typical portion of
atoll rim (bloc diagram from
Battistini et al., 1975).

Overlapping verifies: ∀kP0 . . . C22, ovek>ovek11. #
1

0

ovek(u)
ove1(u)

du (22)ovek are decreasing functions normalized by N, the num-
ber of individuals (or pixels) (Fig. 5). This set of func-

considering that if ove1(u) is null then the ratio ovek(u)/tions authorizes overlap degrees to be defined (see Defi-
ove1(u) is null too.nition 9).

Overlap degrees are values ranging between 0 and 1
Definition 9 (Appendix A6) (Definition 9). They are all equal to 0 if l is a crisp parti-
The overlap degree of level 0 is [see Eq. (21)]: tion and equal to 1 if l is a fuzzy partition like the one

reported in Fig. 4b. Using Proposition 1, it is easy to
#

1

0

ove0(u)
12ove1(u)

du (21) show that the overlapping of level k of l is also the over-
lapping of level k of l*, and that the overlap degrees
associated with l are equal to the overlap degrees associ-Now, let k be an element of 1 . . . C21. The overlap

degree of level k is (see Eq. (22)]: ated with l*.

Table 2. Confusion Matrix Obtained with PGK Classifier

Confusion Matrix PGK Reference

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

1 242 42 0 0 0 0 0 0 0 0 0 0 0 284
2 21 97 0 1 0 0 0 0 0 1 0 0 0 120
3 0 0 8 0 0 0 0 0 0 49 0 0 0 57
4 0 19 0 112 0 0 0 0 0 6 0 0 0 137
5 0 0 0 0 182 0 0 0 0 0 0 0 0 182
6 0 0 0 0 0 43 0 0 3 0 0 0 0 46
7 0 0 0 0 7 0 47 0 7 0 0 0 0 61
8 0 0 0 0 0 2 0 43 0 0 0 0 0 45
9 0 0 0 0 0 6 0 0 15 0 0 2 0 23

10 0 0 15 0 0 0 0 0 0 248 0 0 0 263
11 0 0 0 0 0 0 0 0 0 0 4 0 0 4
12 0 0 0 0 0 0 2 0 11 3 0 87 0 103
13 7 20 0 64 0 16 0 1 0 0 47 4 16 175
N 270 178 23 177 189 67 49 44 36 307 51 93 16 1500

N is the number of control pixels. Kappa: 73.16%; Tau: 74.29%; PA: 76.27%; NPA: 84.11%.
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Table 3. Confusion Matrix Obtained with FGG Classifier

Confusion Matrix FGG Reference

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 Total

1 241 33 0 0 0 0 0 0 0 0 0 0 0 274
2 29 131 0 3 0 0 0 0 0 1 0 0 0 164
3 0 0 13 0 0 0 0 0 0 155 0 0 0 168
4 0 14 0 152 0 0 0 0 0 6 1 0 0 173
5 0 0 0 0 185 0 0 0 0 0 0 0 0 185
6 0 0 0 0 0 58 0 0 6 0 0 2 0 66
7 0 0 0 0 4 0 49 0 9 0 0 2 0 64
8 0 0 0 0 0 7 0 44 0 0 0 0 1 52
9 0 0 0 0 0 2 0 0 14 0 0 3 0 19

10 0 0 10 0 0 0 0 0 2 142 0 0 0 154
11 0 0 0 8 0 0 0 0 0 0 46 0 0 54
12 0 0 0 0 0 0 0 0 5 3 0 86 0 94
13 0 0 0 14 0 0 0 0 0 0 4 0 15 33
N 270 178 23 177 189 67 49 44 36 307 51 93 16 1500

N is the number of control pixels. Kappa: 75.79%; Tau: 76.60%; PA: 78.40%; NPA: 83.50%.

Plausibility and Credibility Matrices uncertainty quantified by the couple [crj(i), plj(i)]. It is
expected that l will support the picture given by m asOverlapping aims to provide a self-characterization of a
often as possible and with the firmest possible belief,fuzzy partition. Hereafter, we propose tools to evaluate
hence the tools proposed in this section.fuzzy partitions still based on the plausibilistic closure,

but according to an external reference. This external ref- Definition 10 (Appendix A5)
erence could be a crisp or a fuzzy control partition, ob- The plausibility matrix associated with couple (l,m) is the
tained, for instance, by field survey, image interpretation, matrix of size C3C defined by Eq. (23):
and softcopy digitizing. Eventually, it is preferable to

∀kP1 . . . C, ∀iP1 . . . C, mki5ojP1 . . . N\ejPFi
plj(k) (23)handle both crisp and fuzzy control partitions. However,

here, we only develop the case of a crisp control parti-
In the same way, the credibility matrix associated withtion. Indeed, the theoretical development for the case of
couple (l,m) is the matrix of size C3C defined by Eq.fuzzy reference partitions goes beyond the scope of the
(24):present paper, which aims to introduce the main ideas

that led to the development of new tools. The under- ∀kP1 . . . C, ∀iP1 . . . C, mki5ojP1 . . . N\ejPFi
crj(k) (24)

standing of these ideas does not require the analysis of
The plausibility and credibility matrices are not theall the possible cases. The general case of the evaluation

result of counting the co-occurrence of two qualitativeof fuzzy partition according to another fuzzy control par-
variables (i.e., contingency tables). Therefore, they aretition will be described elsewhere (Matsakis and André-
not confusion matrices. But, if partition l is crisp, bothfouët, in preparation).
plausibility and credibility matrices coincide with theLet m5(Fi)iP1 . . . C be a crisp C-partition of a subset
confusion matrix associated with couple (l,m) (Matsakis,F of E. Let us assume that m is a control partition. m thus
1998). Finally, it is easy to show (using Proposition 1)corresponds to the “reference sample data” of traditional
that the plausibility and credibility matrices associatedaccuracy assessment. The study of m allows to state if the
with (l,m) are also the plausibility and credibility matricesproposition “the pixel ej of F belongs to class i” is TRUE

or FALSE, whereas the study of l allows assigning an associated with (l*,m*).

Table 4. Ordinal Information (in percentage) Associated with Partition PGK

Ordinal Information PGK

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 All

lev0 89.63 54.49 34.78 63.28 96.30 64.18 95.92 97.73 41.67 80.78 7.84 93.55 100.00 76.27
lev1 9.26 45.51 56.52 33.33 3.70 17.91 4.08 2.27 27.78 16.61 84.31 4.30 20.53
lev2 1.11 8.70 3.39 17.91 19.44 1.63 7.84 2.15 2.73
lev3 11.11 0.00 0.27
lev4–lev12 0.98 0.20
N 270 178 23 177 189 67 49 44 36 307 51 93 16 1500

The test pixels of class 1 “join” level 0 in 89.63% of the cases. N is the number of control pixels.
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Table 5. Ordinal Information (in percentage) Associated with Partition FGG

Ordinal Information FGG

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 All

lev0 89.26 73.60 56.52 85.88 97.88 86.57 100.00 100.00 38.89 46.25 90.20 92.47 93.75 78.40
lev1 10.74 26.40 43.48 11.30 2.12 10.45 30.56 50.81 1.96 4.30 6.25 19.33
lev2 2.82 1.50 16.67 1.63 3.92 3.23 1.47
lev3 0.00 8.33 0.00 0.00 0.20
lev4–lev12 1.50 5.56 1.30 3.92 0.20
N 270 178 23 177 189 67 49 44 36 307 51 93 16 1500

The test pixels of class 1 “join” level 0 in 89.26% of the cases. N is the number of control pixels.

Note that the plausibility and credibility matrices are The fuzzy partitions provided a classification into
sample size-dependent, as are the confusion matrices. Of C513 classes (Table 1) to describe the morphology of a
course, each entry can be divided by the number of con- typical atoll rim of the Pacific Ocean (Andréfouët et al.,
trol pixels in each class to get probability that can be in press). The 13 classes described the deep water areas
readily compared form one matrix to another, as is typi- (class 1); the shallow water areas (classes 2, 4, 11, and 12);
cally done for confusion matrices. the vegetation, soils, and ponds (classes 3, 5, 7, and 9);

the different carbonate objects (classes 6, 8, 10, and 13)
(Fig. 6). Some classes were considered only because ofAPPLICATION
their geomorphologic relevance and to obey standards in

Data the description of atoll structures (Battistini et al., 1975).
We used a set E containing N5160,345 pixels comingTwo partitions were considered to illustrate our develop-
from a SPOT-HRV XS multispectral image of Tikehauments. They came from supervised fuzzy classification al-
atoll (Intes et al., 1995), in French Polynesia. The controlgorithms. One algorithm derived from the unsupervised
partition used for the computation of the various matri-“PCM-Possibilistic C-Means” algorithm proposed by
ces (confusion, plausibility, and credibility matrices) in-Krishnapuram and Keller (1993) and based on work by
cluded 1,500 pixels of a subset F of E. In the field, train-Gustafson and Kessel (1979); the other is derived from
ing zones were profiles of several hundred meters longthe unsupervised “FCM-Fuzzy C-Means” (Bezdek, 1981)
and 60 meters wide that crossed both homogeneous andalgorithm proposed by Gath and Geva (1989). Hence-
transition zones. Profiles were randomly positioned alongforth, we used the acronyms PGK (“Possible Gustafon
the atoll rim. Mean and standard deviation of the proto-and Kessel”) and FGG (“Fuzzy Gath and Geva”) to dif-
type vectors appear in Table 1. Some classes have similarferentiate our supervised algorithms from their unsuper-
statistical parameters (e.g., “kopara pond” and “intertidalvised ancestors (PCM and FCM). Both algorithms used
conglomerate”), hence the system was not a priori opti-the Mahalanobis distance and required that class be pre-
mized for spectral discrimination of the classes (Chu-viously characterized by a prototype made of a mean vec-

tor and a covariance matrix. vieco and Congalton, 1988). The control partition de-

Table 6. Plausibility Matrix Associated with Partition PGK

Plausibility Matrix PGK

Class 1 2 3 4 5 6 7 8 9 10 11 12 13

1 250.95 115.15 4.83 11.91 0 0 0 0 0 54.24 1.37 0 0
2 157.69 167.19 0.94 46.48 0 0 0 0 0 26.44 4.59 0 0
3 0 0 16.85 0 0 0 1.12 0 0.58 204.13 0 1.72 0
4 14.87 48.39 4.14 158.68 0 0 0 0 0 68.70 14.53 0 0.06
5 0 0 0.14 0 141.85 0 4.66 0 0.37 4.19 0 0.03 0
6 0 0 0 0 0 48.33 2.86 0.62 10.34 0.22 0 14.09 0.01
7 0.09 0.06 0.47 0.73 20.73 2.12 48.34 0 18.20 10.09 0 44.37 0.44
8 0 0 0 0 0 16.35 0.75 42.55 1.36 0 0 1.27 0.66
9 0.97 0.17 0.83 0.60 0.02 41.79 23.18 0.51 28.99 17.78 0 62.07 0.43

10 0.99 1.70 20.72 9.46 0.71 0.94 8.31 0 5.97 291.14 0.06 23.02 0.33
11 3.47 16.00 0 18.55 0 0 0 0 0 0.03 37.74 0 0
12 1.60 0.98 3.33 6.05 9.31 13.40 39.85 0.51 27.39 72.64 0.07 87.74 1.52
13 127.78 134.32 1.07 135.62 4.48 34.28 5.01 23.56 7.98 19.50 50.02 18.45 13.61
N 270 178 23 177 189 67 49 44 36 307 51 93 16

The sum of the plausibilities that pixels of class 1 belong to class 2 was estimated at 157.69 (first column, second row). N is the number of control pixels.
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Table 7. Plausibility Matrix Associated with Partition FGG

Plausibility Matrix FGG

Class 1 2 3 4 5 6 7 8 9 10 11 12 13

1 264.66 85.99 1.00 0 0 0 0 0 0 11.31 0 0 0
2 132.97 169.62 0 26.06 0 0 0 0 0 15.04 0.22 0 0
3 0 0 19.26 0 0 0 0 0 0 202.23 0 0 0
4 3.36 32.83 0 170.29 0 0 0 0 0 31.53 5.12 0 0
5 0 0 0 0 188.02 0 1.15 0 0 0 0 0 0
6 0 0 0 0 0 63.88 0 0 9.62 0 0 11.79 0
7 0 0 0 0 14.31 0 49.00 0 14.53 0 0 33.18 0
8 0 0 0 0 0 14.24 0 44.00 0 0 0 0 1.00
9 0 0 0 0 0 32.28 13.50 0 25.24 1.39 0 52.30 0

10 0 0 19.41 0 0 0 0 2.62 264.63 0 8.86 0
11 0 3.32 0 14.32 0 0 0 0 0 0 47.53 0 0
12 0 0 0.28 0 0 0 23.25 0 19.93 14.18 0 91.09 1.50
13 11.51 22.71 0 56.26 0 7.33 0 0.80 0 0 28.22 4.42 15.47
N 270 178 23 177 189 67 49 44 36 307 51 93 16

The sum of the plausibilities that pixels of class 1 belong to class 2 was estimated at 132.97 (first column, second row). N is the number of control pixels.

rived from our training profiles could be both crisp or tition obtained by defuzzification of PGK. Four coeffi-
cients were computed: the PA (“Percentage Agreement”),fuzzy, depending on the inclusion of the transition zones

in the data set. As a beginning, for illustration of the use NPA (“Normalized Percentage Agreement” as defined by
Zhuang et al., 1995), Kappa and Tau (Story and Con-of the new evaluation tools, we used only a crisp control

partition and focused only on the homogeneous zones of galton, 1986; Congalton, 1991; Ma and Redmond, 1995)
coefficients. The confusion matrix and the coefficientsthe atoll rim. PGK is possibilistic (Definition 2), and

FGG is probabilistic (Definition 3). Therefore, partitions associated with partition FGG are shown in Table 3. The
pairwise differences observed between the eight coeffi-created by FGG and PGK were of different nature, but

were evaluated regardless of their nature through their cients were not significant (Ma and Redmond, 1994). At
the class level, PGK was most successful for some classesplausibilistic closure. Intentionally using two different

partitions, we intended to demonstrate that the plausibi- (class 10), while FGG performed better for others (classes
2, 4, and 11). Most of the time, the performances werelistic closure respects their intrinsic properties and that

overlapping, plausibility, and credibility matrices are ade- similar (classes 1, 3, 5, 7, 8, 9, 12, and 13). Overall, it is
difficult to distinguish the best partition among the twoquate to express their particularities.
crisp partitions achieved by defuzzification.

Confusion Matrices
Ordinal InformationTable 2 reports the confusion matrix associated with the

PGK partition. This matrix resulted from the comparison The ordinal information corroborated a point of view ex-
pressed previously. Let us consider the first column ofof two crisp partitions; the control partition and the par-

Table 8. Normalized Plausibility Matrix Associated with Partition FGG

Normalized Plausibility Matrix FGG

Class 1 2 3 4 5 6 7 8 9 10 11 12 13

1 98.02 48.31 4.35 0 0 0 0 0 0 3.68 0 0 0
2 49.25 95.29 0 14.72 0 0 0 0 0 4.90 0.43 0 0
3 0 0 83.74 0 0 0 0 0 0 65.87 0 0 0
4 1.24 18.44 0 96.21 0 0 0 0 0 10.27 10.04 0 0
5 0 0 0 0 99.48 0 2.35 0 0 0 0 0 0
6 0 0 0 0 0 95.34 0 0 26.72 0 0 12.68 0
7 0 0 0 0 7.57 0 100.00 0 40.36 0 0 35.68 0
8 0 0 0 0 0 21.25 0 100.00 0 0 0 0 6.25
9 0 0 0 0 0 48.18 27.55 0 70.11 0.45 0 56.24 0

10 0 0 84.39 0 0 0 0 0 7.28 86.20 0 9.53 0
11 0 1.87 0 8.09 0 0 0 0 0 0 93.20 0 0
12 0 0 1.22 0 0 0 47.45 0 55.36 4.62 0 97.95 9.38
13 4.26 12.76 0 31.79 0 10.94 0 1.820 0 0 55.33 4.75 96.69

Values are expressed in percentages. On average, a text pixel of class 1 (first column) was assigned the plausibility 0.49 (49.25%) of belonging to class 2
(second row).
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Table 9. Credibility Matrix Associated with Partition PGK

Credibility Matrix PGK

Class 1 2 3 4 5 6 7 8 9 10 11 12 13

1 80.00 3.27 0 0 0 0 0 0 0 0 0 0 0
2 1.45 9.14 0 0.01 0 0 0 0 0 0 0 0 0
3 0 0 0.07 0 0 0 0 0 0 0.25 0 0 0
4 0 1.37 0 28.92 0 0 0 0 0 0.81 0 0 0
5 0 0 0 121.68 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 4.35 0 0 0.19 0 0 0 0
7 0 0 0 0 0.58 0 8.50 0 0.74 0 0 0 0
8 0 0 0 0 0 0.28 0 19.18 0 0 0 0 0
9 0 0 0 0 0 0.41 0 0 3.73 0 0 0.01 0

10 0 0 3.95 0 0 0 0 0 0 55.98 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0.01 0 0
12 0 0 0 0 0 0 0.01 0 0.89 0.99 0 19.39 0
13 0.51 1.96 0 11.89 0 1.88 0 0.19 0 0 10.79 0.28 11.47
N 270 178 23 177 189 67 49 44 36 307 51 93 16

The sum of the credibilities that pixels of class 1 belong to class 2 was estimated at 1.45 (first column, second row). N is the number of control pixels.

Table 4 (partition PGK). In 89.63% of the cases, the • The out-of-diagonal values of the plausibility ma-
trix associated with partition PGK (Table 6)control pixels of class 1 “joined” level 0, and defuzzifica-
were generally greater than the correspondingtion of PGK would lead to the correct classification of
values in the plausibility matrix associated withthese pixels. In the other cases, defuzzification of PGK
partition FGG (Table 7). Table 8 illustrates awould lead to a wrong classification. But, as expected,
normalized plausibility matrix, where each entrylevel 1 itself gathered most of the “stray” pixels, and,
was divided by the number of control pixels toeven if some still went astray to level 2 (1.11% of the
get probability. Here, Tables 6 and 7 can becases), none got lost in the lower levels. As a general
compared readily because the same set of con-rule, if a control pixel did not join level 0, then it went
trol pixels was used.astray to level 1. For partition FGG (Table 5), this rule

• The diagonal values of the credibility matrix associ-was transgressed only in 2.27% of the cases (1.471
ated with partition PGK (Table 9) were much0.2010.60). For PGK, it was in 3.20% of the cases
lower than the corresponding values in the credi-(2.7310.2710.20).
bility matrix associated with partition FGG (Table
10). Here, Tables 9 and 10 can be comparedPlausibility and Credibility Matrices
readily because the same set of control pixels wasThe diagonal gathered the greatest values in any matri-
used.ces. Generally, the partition PGK agreed, like FGG, with

the control partition. However, PGK and FGG displayed As a general rule, PGK considered that several classes
were plausible for a given pixel. Consequently, even thedifferent features:

Table 10. Credibility Matrix Associated with Partition FGG

Credibility Matrix FGG

Class 1 2 3 4 5 6 7 8 9 10 11 12 13

1 133.38 6.08 0 0 0 0 0 0 0 0 0 0 0
2 5.34 55.51 0 0.41 0 0 0 0 0 0.10 0 0 0
3 0 0 3.59 0 0 0 0 0 0 35.97 0 0 0
4 0 2.30 0 95.81 0 0 0 0 0 1.04 0.07 0 0
5 0 0 0 0 174.69 0 0 0 0 0 0 0 0
6 0 0 0 0 0 25.12 0 0 1.58 0 0 0.56 0
7 0 0 0 0 0.98 0 25.47 0 3.26 0 0 0.13 0
8 0 0 0 0 0 2.83 0 43.20 0 0 0 0 0.53
9 0 0 0 0 0 0.28 0 0 5.46 0 0 0.30 0

10 0 0 3.74 0 0 0 0 0 0.07 66.34 0 0 0
11 0 0 0 3.31 0 0 0 0 0 0 22.70 0 0
12 0 0 0 0 0 0 0 0 1.28 1.28 0 29.34 0
13 0 0 0 2.71 0 0 0 0 0 0 1.08 0 13.50
N 270 178 23 177 189 67 49 44 36 307 51 93 16

The sum of the credibilities that pixels of class 1 belong to class 2 was estimated at 5.34 (first column, second row). N is the number of control pixels.
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Table 11. Overlap Degrees (in percentage) Associated with Partitions PGK and FGG

Level

0 1 2 3 4 5 6 7 8 9 10 11 12

PGK overlap degree 26.61 98.63 50.74 19.80 8.57 3.20 1.53 0.60 0.28 0.08 0 0 0
FGG overlap degree 0.05 78.52 13.86 2.45 0.23 0 0 0 0 0 0 0 0

most plausible class to which the pixel could be assigned Remarks
did not receive very high credibility. Inspect, for instance, The low degree of overlap and high level of credibility
the case of classes 3 and 10, which are spectrally very stated by FGG, even in case of spectral confusion, is ex-
close (Table 1). Plausibilities were similar for both algo- plained by the probabilistic nature of the FGG algo-
rithms, but credibilities were very different and were rithm. Such patterns did not clearly reveal the ambigu-
higher for FGG. It may be asked whether partition PGK ities between classes. Conversely, the overlap figure
is not excessively cautious and partition FGG excessively obtained for PGK, poor credibility, and high plausibility
self-confident. In the case of classes 3 and 10, there is suggested that many classes were spectrally similar. This
no reason that justifies the high credibilities achieved by is an accurate conclusion, consistent with the presence
FGG. Indeed, only contextual knowledge could tell if a of classes of similar nature (shallow water) separated only
pixel belonged or not to the class 3 (kopara pond) or class to obey geomorphological considerations (e.g., the class 2
10 (intertidal conglomerate) (Andréfouët and Roux, 1998). “hoa,” transversal to the rim, and the class 4, “reef flat,”

longitudinal). With regard to the characteristics of some
Overlapping classes (spectrally close, but differentiated by the analyst

for functional or structural reasons), PGK appeared bet-Overlap is a self-evaluation of the entire fuzzy partition,
ter than FGG since it did not arbitrarily separate classeswithout any external reference. Overlapping was unrelated
of similar nature.to the 1,500 control pixels and was instead computed from

Actually, when comparing partitions to decide whichthe entire set of 160,345 pixels. Table 11 and Fig. 7b show
that the levels of the FGG fuzzy partition overlapped very one is better for a given application, it is necessary to keep

in mind the primary objectives that led to their creations.slightly. Level 0, for instance, was almost completely sep-
arated from level 1: its overlap degree was only 0.05%. These objectives may be divergent and lead to antagonis-

tic criteria. If the partition has to describe as preciselyThe overlap degree for level 2 was much higher, 13.86%.
It could be estimated, observing Fig. 7b, that only 10% as possible the true nature of the ground, its complexity

and heterogeneity, even if that entails mixing the classesof the pixels in level 2 received a plausibility greater than
0.50 (only 30% receive a nonzero plausibility). A two- (and thus bears testimony to the artificial character of

these classes), then a good partition has high degrees ofdimensional representation of partition FGG would be
close to Fig. 4a. For PGK, it would be halfway between overlap, high values within the plausibility matrix, diago-

nal and out-of-diagonal as well. Such partitions allowsFigs. 4a and 4b. The overlapping figures confirmed visu-
ally the constraints of the probabilistic partition the location of high-risk confusion zones and their cor-

rections, for instance, in the light of contextual knowl-(Definition 3), which generated low degree of overlap, as
well as the lack of constraints (Definition 2) of a possible edge (Andréfouët et al., 2000). If the partition has to

represent the ground while preserving a predefined classpartition that could generate higher degrees of overlap.

Figure 7. Overlapping graphs for
partitions PGK and FGG.
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Table 13.Table 12.

l 1 2 3 4 5 6 7 8 9 10 m 1 2 3 4 5 6 7 8 9 10

l1 0.4 0.5 0.4 1 0.3 0 0.2 0.9 0.5 0.7 m1 0 0 1 1 0 0 0 1 0 1
m2 1 0 0 0 1 1 0 0 0 0l2 0.8 0.4 0.4 0.2 0.6 0.9 0.3 0.6 0.7 0.4

l3 0.1 0.7 0.4 0.8 0.3 0.5 0.5 0.1 0.7 0.3 m3 0 1 0 0 0 0 1 0 1 0

system, even if that entails reducing the vision on the and Lionel Laurore, who provided a license of their image
processing software. We also thank IFREMER (Dr. Yann Mo-ground reality, then a good partition has low degrees of
rel) and Territoire de Polynésie Française for providing theoverlap, high diagonal values within the credibility ma-
SPOT image used in this study. “Programme National sur lestrix, and low out-of-diagonal values. A similar criterion is
Récifs Coralliens” and “Institut de Recherche pour le Develop-

implicitly adopted when conventional cartography is ment” provided financial support to S. A. for fieldwork in
done. Whatever the criterion selected for the comparison Tikehau.
of several partitions, we show that it can be assessed
through overlapping, plausibility, and credibility matrices.

APPENDIX A (TUTORIAL)

In this tutorial example, E is a set {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10}CONCLUSION
of N510 elements.

Fuzzy partition evaluation is an intricate problem that
still requires many developments. In this paper, we have Crisp and Fuzyy Partitions
presented an approach employing elements of artificial Each value of the Table 12 belongs to the interval [0,1],
intelligence and information theory. We particularly and each column and each row contain at least one non-
asked ourselves which material could serve as a basis for null element. Table 12 therefore defines a (possibilistic)
the evaluation of a fuzzy partition. Three main preoccu- fuzzy partition. Each value corresponds to a membership
pations guided our research: (1) judging a partition by its degree. The notation lij suits the definitions, but li,j isintrinsic qualities only; (2) breaking free from the nature

preferable here. The membership degree of e10 in classof the data, probabilistic or possibilistic; and (3) focusing
2 is thus l2,1050.4. Table 13 defines another fuzzy parti-on the most significant information located in the highest
tion into C53 classes of E.levels of the partition. The notion of plausibilistic closure

Contrary to l, this second partition m is a probabilis-of a fuzzy partition was introduced. Our theoretical de-
tic fuzzy partition (adding together the three elements ofvelopments led to the proposition of three new tools to
any column gives 1), and the membership degrees mi,j areevaluate a fuzzy partition. First, overlapping provides in-
all equal to 0 or 1. m is therefore a crisp three-partitionformation on the entire structure of the partition without
of E. It could have been defined by the three-tupleany external reference. Then, plausibility and credibility
(E1,E2,E3) as well, with E15{e3,e4,e8,e10}, E25{e1,e5,e6}, andmatrices, whose construction requires the use of a con-
E35{e2,e7,e9}. As a matter of fact, m is the result of a “de-trol partition, allow a class-by-class analysis according to
fuzzification” of l: a membership degree mi,j equal to 1measures derived from the theory of evidence. Because
indicates that the related membership degree li,j is theof these tools, major differences between partitions of
maximum value of the column concerned. For instance,various natures can be detected to select which partition
m2,651 and maxkP1 . . . 3 lk,65max{0,0.9,0.5}50.95l2,6. Theis preferable for a given application. Overlapping, plausi-
partition m expresses that element e6 essentially belongsbility, and credibility matrices that we introduced here
to class 2 according to l.represent a novel step toward the development of meth-

ods dedicated to the evaluation of fuzzy partition.
Plausibility and Credibility Measures
Let V be the set 1 . . . 4, and let m be the function
from 3(V) into [0,1] defined by m({2})50.7, m({1,2})5The numerous constructive comments of the reviewers were of
0.2, m({4})50.1, and m(A)50 for any other subset A ofgreat value in improving the initial manuscript. We are also

grateful to GEOIMAGE company (Sophia-Antipolis, France) V. We have [see Eq. A1)]:

Table 15.Table 14.

lev 1 2 3 4 5 6 7 8 9 10 l* 1 2 3 4 5 6 7 8 9 10

lev0 0.8 0.7 0.4 1 0.6 0.9 0.5 0.9 0.7 0.7 l*1 0.2 0.5 0.2 1 0 0 0 1 0.5 0.8
l*2 0.9 0.2 0.2 0 0.7 1 0 0.7 0.8 0.2lev1 0.4 0.5 0.4 0.8 0.3 0.5 0.3 0.6 0.7 0.4

lev2 0.1 0.4 0.4 0.2 0.3 0 0.2 0.1 0.5 0.3 l*3 0 0.8 0.2 0.9 0 0.5 0.5 0 0.8 0
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Table 18.Table 16.

lev* 1 2 3 4 5 6 7 8 9 10 cr cr1 cr2 cr3 cr4 cr5 cr6 cr7 cr8 cr9 cr10

lev*0 0.9 0.8 0.2 1 0.7 1 0.5 1 0.8 0.8 1 0 0 0 0.1 0 0 0 0.3 0 0.6
2 0.7 0 0 0 0.7 0.5 0 0 0 0lev*1 0.2 0.5 0.2 0.9 0 0.5 0 0.7 0.8 0.2

lev*2 0 0.2 0.2 0 0 0 0 0 0.5 0 3 0 0.3 0 0 0 0 0.5 0 0 0

oAP3(V)m(A)5m({2})1m({1,2})1m({4})51 and m([)50 2). The value l*1,150.2 comes after. Therefore, the credi-
(A1) bility, according to l, that e1 is a member of class 2 is

cr1(2)5l*2,12l*1,150.920.250.7 (Table 18). The otherm is therefore a basic probability function.
credibilities cr1 and cr1(3) are null.Let Pl and Cr be the plausibility and credibility mea-

The basic probability function m defined as above issures associated with m. We have [see Eqs. (A2), (A3),
related to the membership degrees li,1 concerning ele-(A4), (A5), (A6), and (A7)]:
ment e1 (see Proposition 2). The first column of the pl

Pl[{1})5oBP3(V)\B∩{1}?[m(B)5m({1,2})50.2 (A2) and cr tables can be retrieved from the plausibility and
credibility measures Pl and Cr associated with m [seePl[{2})5oBP3(V)\B∩{2}?[m(B)5m({2})1m({1,2})50.9 (A3)
Eqs. (A8) and (A9):

Pl[{3})5oBP3(V)\B∩{3}?[m(B)50 (A4)
pl1(1)5Pl({1})50.2, pl1(2)5Pl({2})50.9, pl1(3)5Pl({3})50

Cr[{1})5oBP3(V)\B,{1}m(B)50 (A5) (A8)
Cr[{2})5oBP3(V)\B,{2}m(B)5m({2})50.7 (A6) cr1(1)5Cr({1})50, cr1(2)5Cr({2})50.7, cr1(3)5Cr({3})50

(A9)Cr[{3})5oBP3(V)\B,{3}m(B)50 (A7)

Plausibility and Credibility MatricesLevels and Plausibilistic Closure
The crisp partition m presented earlier is the result of aThe levels of partition l are shown in Table 14. For each
“defuzzification” of l. Let us also consider m a test parti-column of the l table (see above), the membership de-
tion. In that particular case, the subset F is E itself, F1grees are arranged in decreasing order (from top to bot-
is {e3,e4,e8,e10}, F2 is {e1,e5,e6}, and F3 is {e2,e7,e9}. The plau-tom). The plausibilistic closure of l is shown in Table 15.
sibility and credibility matrices associated with coupleThe 10 lev1 values are lev1,150.4, lev1,250.5, lev1,350.4,
(l,m) are defined by the Tables 19 and 20.lev1,450.8, etc. Two of these values, lev1,550.3 and

For instance, the value 1.1 that appears in the plau-lev1,750.3, are lower than l1,150.4; therefore, l*1,152/
sibility matrix, 1st row, 2nd column, is the sum of the1050.2. All these values except lev1,450.8 are lower than
values located in the second row of the pl table and thatl2,150.8; therefore, l*2,159/1050.9. None of these values
are related to the elements e3,e4,e8, and e10 of class 1. Weare lower than l3,550.3; therefore, l*3,550/1050, etc. Ta-
have: 1.150.21010.710.2.ble 16 shows the levels of partition l*. We let the reader

compute the plausibilistic closure of l* and check that
(l*)*5l* (see Proposition 1). Overlapping

Let us consider the following points: (0.1,1.0), (0.2,1.0),
Plausibilities and Credibilities According to l (0.3,1.0), (0.4,0.9), (0.5,0.8), (0.6,0.8), (0.7,0.8), (0.8,0.7),
The plausibility (Table 17) according to l that e1 is a (0.9,0.5), and 1.0,0.2). The x-coordinates of these points
member of class 1 is pl1(1)5l*1,150.2. The plausibility ac- are evenly distributed between 0 (excluded) and 1 (in-
cording to l that e1 is a member of class 2 is pl1(2)5 cluded). The y-coordinates are the 10 lev*0 values ar-
l*2,150.9. The plausibility according to l that e5 is a mem- ranged in decreasing order. The points define a scaled
ber of class 3 is pl5(3)5l*3,550, etc. function ove0, the overlapping of level 0 of l (Fig. 8).

Now, let us consider for instance the first column of The overlap degree of level 0 is about 28% [see
the l* table. The maximum value is l*2,150.9 (according Eq. (A10)]:
to l*, and l, the element e1 essentially belongs to class

Table 19.
Table 17.

Plaus. 1 2 3
pl pl1 pl2 pl3 pl4 pl5 pl6 pl7 pl8 pl9 pl10 1 3.0 1.1 1.1

2 0.2 2.6 0.51 0.2 0.5 0.2 1 0 0 0 1 0.5 0.8
2 0.9 0.2 0.2 0 0.7 1 0 0.7 0.8 0.2 3 1.0 1.0 2.1

N 4 3 33 0 0.8 0.2 0.9 0 0.5 0.5 0 0.8 0
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Table 20.
∀iP1 . . . C, ∀jP1 . . . N, (l*)*ij 5f*(l*ij ) (A15)

Cred. 1 2 3
For any j of 1 . . . N let sj be a permutation of 1 . . . C

1 1.0 0 0
such that ∀kP1 . . . C21, lsj(k)j>lsj(k11)j. We have [see2 0 1.9 0

3 0 0 0.8 Eqs. (A16) and (A17)]:
N 4 3 3

∀jP1 . . . N, ∀kP1 . . . C21, lsj(k)j>lsj(k11)j (A16)

∀jP1 . . . N, ∀kP0 . . . C21, levkj5lsj(k11)j (A17)

#
1

0

12ove0(u)
12ove1(u)

du5
121.0
120.9

0.11
121.0
120.8

0.11
121.0
120.7

0.1 where Eq. (A17) results from Definition 5 concerning
levels.

Generally, f is not a strictly increasing function. But
1

120.9
120.5

0.11
120.8
120.5

0.11
120.8
120.2

0.1
we have [see Eq. (A18)]:

∀iP1 . . . C, ∀jP1 . . . N, ∀kP1 . . . N, lev1k1
120.8
120.2

0.11
120.7
120.2

0.11
120.5
120.0

0.1
,lij⇔f(lev1k),f(lij) (A18)

We will prove this point now.1
120.2
120.0

0.1
So, let i be an element of 1 . . . C, and j and k two

elements of 1 . . . N. Alternately applying Eq. (A12) and50.2775 (A10)
Eq. (A17) we have [see Eqs. (A19) and (A20)]:

The overlap degree of level 1 is 80% and the overlap
f(lev1k)5f [lsk(2)k]5|[,P1 . . . N \ lev1,,lsk(2)k]|/Ndegree of level 2 is about 11% [see Eq. (A11)]:

5|{,P1 . . . N \ls,(2),,lsk(2)k}|/N (A19)#
1

0

ove1(u)
ove1(u)

du5130.81030.250.80 and
f(lij)5|{,P1 . . . N \ lev1,,lij}|/N

#
1

0

ove2(u)
ove1(u)

du<0.11 (A11) 5|,P1 . . . N \ls,(2),,lij}|/N (A20)

Let us prove first that f is an increasing function. LetRemember that if ove1(u) is null then the ratio ovek(u)/
t1 and t2 be two elements of [0,1] such that t1,t2. Thisove1(u) is considered null too.
assumption and Eq. (A12) give [see Eqs. (A21) and (A22)]:

f(t2)5|{,P1 . . . N \ lev1,,t2}|/NAPPENDIX B (PROOF OF PROPOSITION 1)
5(|{,P1 . . . N \ lev1,,t1}|For any k of 0 . . . C21, let levk be the level k of l and

lev*k be the level k of l*. Let also f and f* be the map- 1|{,P1 . . . N \ t1<lev1,,t2}|)/N (A21)
pings from [0,1] into [0,1] defined by Eqs. (A12) and

f(t2)5f(t1)1|,P1 . . . N \ t1<lev1,,t2}|/N (A22)(A13):
Consequently, f(t1)<f(t2); f is then an increasing function.∀tP[0,1], f(t)5|{,P1 . . . N\lev1,,t}|/N (A12)
So lev1k>lij⇒f(lev1k)>f(lij).

∀tP[0,1], f*(t)5|{,P1 . . . N\lev*1,,t}|/N (A13) Let us assume that lev1k,lij, that is, according to Eq.
(A17): lsk(2)k,lij. This assumption and also Eqs. (A19)According to Definition 6 of the plausibilistic closure of
and (A20) give [see Eqs. (A23) and (A24)]:a partition [see Eqs. (A14) and (A15)]:

f(lij)5(|{,P1 . . . N \ls,(2),,lsk(2)k}|∀iP1 . . . C, ∀jP1 . . . N, l*ij 5f(lij) (A14)

Figure 8.
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∀iP1. . .C, oA,1.. .C11\A∩(i)?[m(A)5ojPi . . .Cm(1 . . . j)
1|{,P1 . . . N \lsk(2)k<ls,(2),,lij}|)/N (A23)

5[ojPi . . .C21(pj2pj11)]1pC
f(lij)5f(lev1k)1|{,P1 . . . N \lsk(2)k<ls,(2),,lij}|/N (A24)

5pi (A31)
Now, |{,P1 . . . N \ltk(2)k<ls,(2),,lij}|.0. Indeed, kP{,P

oA,1 . . . C11\A,{1}m(A)5m({1})5p12p25c1 and
1 . . . N \lsk(2)k<ls,(2),,lij}. Consequently, f(l ij).f(lev1k).

∀iP2 . . . C, oA,1 . . . C11\A,{i}m(A)505ci (A32)We proved that lev1k,lij⇒f(lev1k),f(lij). On the
other hand, we also proved that lev1k>lij⇒f(lev1k>f(lij). Thus m perfectly answers the problem posed.
In other words, f(lev1k),f(lij)⇒lev1k,lij. In conclusion, Note:
lev1k,lij⇔f(lev1k) ,f(lij). Let us assume that the elements of E actually dis-

Now, the proof can be achieved. Let j be an element tribute themselves in a “crisp” way among the C classes
of 1 . . . N. Eq. (A16) and the monotony of f give considered. In practice, only a noisy set of data is likely
∀kP1 . . . C21, f(lsj(k)j>f(lsj(k11)j). In other words, ac- to be available. So, even in that case, the existence of
cording to Eq. (A14), ∀kP1 . . . C21, l*sj(k)j>l*sj(k11)j. Def- elements reasonably not assignable to any of the C

classes is to be expected. One mean of answering thisinition 5 concerning levels thus gives ∀kP0 . . . C21,
lev*kj5l*sj(k11)j. Using Eqs. (A14) and (A17), we finally ob- problem consists in introducing a (C11)th class, in charge

of collecting the noise (Dave, 1992). This is what is donetain the following result [see Eq. (A25)]:
here: m is defined on the set of subsets of 1 . . . C11,

∀jP1 . . . N, ∀kP0 . . . C21, lev*kj5l*sj(k11)j5f [lsj(k11)j] not of 1 . . . C. Resorting to a “noise” class is justified by
the not very constraining character of the fuzzy partition5f(levkj) (A25)
definition (Definition 2). For example, we may easily

Let i be an element of 1 . . . C and j an element of have oiP1 . . . Cpi,1. In that case, no basic probability func-
1 . . . N. Successively applying Eqs. (A15), (A13), (A25), tion defined on the set of subsets of 1 . . . C exists that
(A18), (A12), and (A14), we have [see Eqs. (A26) and ∀iP1 . . . C, Pl({i})5pi.
(A27)]: Only one class is credible (or at least, can be): the

most plausible one. It is possible to reinforce the credi-(l*)*ij 5f*(l*ij )5|{,P1 . . . N\lev*1,,l*ij }|/N bility of other classes? Let us redefine for example
5|{,P1 . . . N \ f(lev1,),f(lij)}|/N (A26) (ci)iP1 . . . C in the following way [see Eq. (A33)]:

(l*)*ij 5|{,P1 . . . N \ lev1,,lij}|/N5f(lij)5l*ij (A27) c15p12p2 and

We thus have (l*)*5l*. ∀iP2 . . . C21, ci5min{12p1,ci21,pi2pi11}

and cC5min{12p1,cC21,pC} (A33)
APPENDIX C (PROOF OF PROPOSITION 2)

This new sequence seems to correspond to a “minimum”Let (pi)iP1 . . . C be a decreasing sequence of elements of
reinforcement of credibilities. But if it is adopted, no ba-[0,1] and let (ci)iP1 . . . C be the sequence of elements of
sic probability function m, defined on the set of subsets[0,1] defined by c15p12p2 and ∀iP2 . . . C, ci50.
of 1 . . . C11, is able to vouch for ∀iP1 . . . C, Pl({i})5piProving Proposition 2 implies proving that there is a
and Cr({i})5ci.basic probability function m, defined on the set of sub-

sets of 1 . . . C11, such that «∀iP1 . . . C, Pl({i})5pi

and Cr({i)}5ci», where Pl and Cr are, respectively, the REFERENCES
plausibility and credibility measures associated with m.
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