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Abstract

We present a C-language program, THERMIC, that solves the 2-dimensional (pseudo 3D for axi-symmetric

cases) conductive and advective heat-transfer equation. THERMIC uses a ®nite-element method that takes into

account realistic geometries, heterogeneous material properties and various boundary and initial conditions. As it

also allows for latent heat (heat production due to crystallisation) and for thermal properties, such as thermal

conductivity, to be dependent on temperature, it is particularly suited to heat transfer problems encountered in the

Earth Sciences. We present sample applications from the various problems already treated by THERMIC (cooling

of magma chambers and dykes, the study of a granitic magma ascent or of pore water ¯ow in sedimentary basins).

Successfully tested on SUN1 and SGI1 UNIX workstations and on Microsoft Windows 951, 981 and NT1 4.0

system based PCs, the THERMIC package can be downloaded from the web (THERMIC home page: http://

www.ipgp.jussieu.fr/UFP/thermic/html/Thermic_home.html) and contains source ®les, make®les and environment

®les as well as executable ®les for both systems and an html directory with help and example ®les. # 1999 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Numerous physical problems in Earth Sciences

involve heat transport phenomena. Ranging from

spatial scales of individual crystals to the entire Earth,

conductive and convective heat transfer plays a key

role in the behaviour of natural systems. However,

analytically exact solutions exist only in a few

examples with simple geometry and one must use nu-

merical approaches to obtain quantitatively valid

models of these important processes in many geologi-

cally realistic situations. A powerful approach to such

continuum problems is the ®nite-element method,

which can be viewed as a general discretisation pro-

cedure (Zienkiewicz and Taylor, 1989).

THERMIC is a computer program that solves the

heat equation using the ®nite-element method in 2-D

space (pseudo 3D in axisymmetric cases). Written in

ANSI C, it has been successfully tested on SUN1 and

SGI1 UNIX workstations and on Microsoft Windows

951, 981 and NT1 4.0 operating system based PCs.

Its main features are:
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. steady-state or time-varying cases,

. any 2D or axisymmetric geometry using isopara-

metric elements (3, 4, 6, 8 or 9 nodes),

. ¯uid circulation (forced convection with a prescribed

¯uid velocity ®eld),

. handling of various boundary conditions: prescribed

heat ¯ow, prescribed temperature, ¯uid ¯ow and

mixed conditions,

. spatially variable material properties,

. temperature-dependent material properties (non-

linear case),

. latent heat of crystallisation (nonlinear case),

. material properties or boundary conditions can be

changed at each time step,

. dialogs in French or English and possible extensions

to an arbitrary number of languages (a separate

ASCII ®le contains the questions and answers of

THERMIC),

. modular ANSI C based conception.

The THERMIC package includes 4 di�erent pro-

grams:

. MESHGEN, that generates the ®nite-element mesh;

. THERMIC, the main heat-equation solver;

. OUT2XYT, that formats THERMIC's output ®les

into x, y, temperature ®les;

. THERMPRF, that generates temperature vs. time

or vs. distance pro®les from THERMIC's output

®les.

Since ®nite-element theory is now well known (for

example Zienkiewicz and Taylor, 1989; OnÄ ate et al.,

1991), we will give only a brief review of the theoreti-

cal basis. Then, we will present the program itself and

some examples of its use.

2. Theory

The general form of the conductive heat equation in

a solid having material advection can be written in

Cartesian coordinates:

~r� ~K ~rY� � rc
dY

dt
� �rc�f ~vf

~rY�Q � 0 �1�

where Y is the temperature, ~K is the thermal conduc-

tivity tensor depending on direction and temperature,

rc the heat capacity that can depend on temperature,

(rc )f the ¯uid heat capacity and vf its Darcy velocity

®eld and Q the heat production that can also depend

on temperature. The boundary conditions for such a

solid can be expressed as follows (called mixed bound-

ary conditions hereafter):

� ~K ~rY� ~n � F0 ÿ hs�YÿYa� �2�

where ~n is the unit outward normal vector of the

boundary of the model, F0 is the temperature-indepen-

dent part of the heat ¯ow inward across the boundary

and hs is the coe�cient of any temperature-dependent

part of the ¯ux inward across the boundary, which is

assumed proportional to the di�erence between Y and

a reference temperature Ya.

Using a variational formulation, the heat Eq. (1) can

be expressed as a sum of integrals on the surface of a

planar solid (2-D case) and on its boundaries. We can

then build up a ®nite-element scheme that consists of

dividing the solid into polygonal elements of ®nite size.

Material properties, such as K, rc and Q are assigned

to each element (note that K is the coordinate-aligned

orthotropic thermal conductivity, ~K � �Kx

0
0
Ky
�). The

boundary conditions are applied to the external el-

ements. The temperature is computed at nodes of each

element and the solution of the complete system is an

assembly of its elements. Thus the solution with

THERMIC follows the classical pattern in four steps

of any ®nite-element program:

1. determination of the element properties from the

particular geometry and nodal loads;

2. assembly of all equations into a global matrix;

3. introduction of boundary conditions;

4. solution of the resulting linear equation system by

triangular decomposition of the global matrix and

Gaussian elimination.

Concerning the ¯uid velocity, one must be aware

that it is not the actual velocity of the ¯uid ¯owing

through a porous medium but the Darcy velocity. In

this situation, the ¯uid keeps its actual density and

heat capacity since the Darcy velocity, considered as

an average velocity per unit area, already includes the

e�ects of porosity. However, if all of the rock is mov-

ing (as in subduction), then the velocity ®eld and the

designated ¯uid density and heat capacity, are those of

the moving rock.

A main feature of THERMIC is that it allows a

nonlinear solution of the heat equation, with thermal

conductivity and heat capacity that can depend on

temperature, as well as the in¯uence of the heat of

crystallisation.

For the thermal conductivity K, we use the following

relationship (Touloukian et al., 1981; Delaney, 1987):

K�Y� � aK � bK=�Y� 273:15�

where aK and bK are coe�cients determined empiri-

cally (Y in 8C).

For the heat capacity, rc, we have the following re-

lationship:

rc�Y� � arc � brc:�Y� 273:15�
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where brc is a constant mean thermal coe�cient and

arc the heat capacity at temperature 0 K.

In order to take into account the heat of crystalliza-

tion during the cooling of a magmatic body, we have

used (Delaney, 1987):

rc�Y� � rc�Y� � Lf=�Yliquidus ÿYsolidus�

which is valid only in the interval [Ysolidus, Yliquidus].

These three temperature-dependent relationships add

a nonlinear loop to the solution process at each time

step and the control criterion is the convergence rate

of the temperature solution.

The time integration is a semi-implicit ®nite-di�er-

ence scheme and a coe�cient that can range between 0

and 1 determines the balance between the fully explicit

and fully implicit ®nite-di�erence scheme. We have

determined that 0.667 is a good compromise between

precision of the solution and computing time. This

coe�cient can be adjusted as an input parameter.

3. Computer program

The initial version of THERMIC software was writ-

ten in Borland Turbo Pascal1 for MS-DOS1 and it

has not been fully rewritten in C, but translated from

Turbo Pascal1. The C code resembles Pascal and the

®rst version had to handle the 640 Kb memory limi-

tation of all programs running under MS-DOS1.

Various schemes used to bypass this memory limitation

still remain in the present C version. Nevertheless,

these coding issues may be avoided by referring to the

comments contained in the source code.

The THERMIC package consists of four di�erent

programs: MESHGEN, THERMIC, OUT2XYT,

THERMPRF.

3.1. The mesh generator, MESHGEN

Any structure, even one with holes, can be rep-

resented by a mesh whose elements are de®ned by

polygons with 3 to 9 vertices, called nodes. Once a

structure has been meshed, the solution of any con-

tinuous problem can be computed at each node.

MESHGEN creates a ®le containing the topology of

the mesh, that is the links between nodes and their

coordinates. This ®le is then used as input to the main

program, THERMIC.

MESHGEN uses a macro-block (�.blc) ®le as input.

This ®le contains all information necessary to generate

a mesh for a structure described by macro-blocks (8-

node blocks of the same material having homogeneous

properties). The macro-blocks as well as the way to

divide them into smaller elements are de®ned. Finally,

the program builds 3, 4, 6, 8 or 9 node isoparametric

elements (Zienkiewicz and Phillips, 1971).

The maximum number of elements and nodes is

®xed using #de®ne pre-compilation instructions con-

tained in the declarat.h header ®le. They respectively

default to 900 (melem variable) and 1350 (mpoint vari-

able). These values may be changed by simply editing

the declarat.h ®le and recompiling the whole source

code. There is no ®rm upper limit to these constants

despite the hardware memory limitations.

MESHGEN is also able to optimize the computed

mesh by re-numbering the nodes to minimize the fron-

tal width of the linear system to solve. This optimiz-

ation speeds up the solution but leads to unnatural

node numbering and thus creates some di�culties in

entering boundary conditions.

A complete description as well as an example of a

macro-block ®le is given in the users guide (download-

able from the web [1]).

3.2. The solver, THERMIC

The computing scheme of THERMIC can be

described in four steps (Fig. 1):

1. reading the mesh data (�.mes ®le);

2. reading conditions of the thermal problem to solve

(�.res ®le);

3. skyline matrices assembly and storage;

4. solution and output.

The solution scheme itself depends on the kind of

problem being solved: steady or transient state, linear

or nonlinear system and symmetric or non-symmetric

geometry.

As already mentioned, one of the most useful fea-

tures of THERMIC is its capability to handle non-

linear systems. The solution algorithm for such non

linear systems is the following:

1. linearize the system;

2. solve the associated linear system;

3. compute the norm to test the convergence;

4. repeat steps 1, 2, 3 until convergence is achieved

(norm lower than a given variable called seuil ) or

until the maximum number of iterations is reached

(nbremaxinl variable).

Both variables seuil (default 0.03) and nbremaxinl

(default 20) are de®ned and may be changed by using

#de®ne directives within the header ®le declarat.h.

3.3. Post-processing of results, THERMPRF and

OUT2XYT

3.3.1. THERMPRF

THERMPRF extracts temperature vs. time or vs.
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distance pro®les from any output ®le of a THERMIC

run.

3.3.2. OUT2XYT

OUT2XYT converts any output ®le from

THERMIC into an x, y, t ®le where x and y are the

coordinates of the nodal points and t the temperature.

This xyt output ®le may be easily entered into an end-

user-preferred plotting tool to obtain isotherm plots

like the one shown on Fig. 2 (e.g. GMT software by

Wessel and Smith, 1991).

3.3.3. ISOTHERM

ISOTHERM is a supplementary program that cre-

ates 2D contour plots of temperature from any

THERMIC's output ®le (Fig. 2). It uses the same

nodal functions and ®nite-element grid as the one used

in the solution of the problem. ISOTHERM is only

available on PC as an executable ®le (consult our

WEB site for the future release of the source code and

UNIX versions).

4. General computing ¯ow

The whole process of using THERMIC is rep-

resented on Fig. 3. A limited number of questions are

posed to the user within a THERMIC session, most of

which have default answers. The main information

concerning the problem to solve is provided using

input ®les. Thus the most di�cult steps consist of writ-

ing both the macro-block (�.blc) and the solution

(�.res) ®les. The user's guide gives the complete instruc-

tions for building these ®les.

The macro-block ®le (�.blc), describing the structure

to model as a set of super-elements, is used by

MESHGEN to generate a mesh to be stored in a �.mes

®le. An option allows the nodes of the ®nal mesh to be

re-numbered in order to optimize the solution scheme.

The solution ®le (�.res) applied to a speci®ed mesh

(�.mes ®le) describes the problem to be solved. It con-

tains the following information:

. type of state (steady or transient);

. type of solution: linear or non linear (whether the

properties of the material depend on the temperature

or not);

. number and properties of the materials;

Fig. 1. Outline of problem solution scheme.
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. mixed type conditions, prescribed temperatures,

advective term, changes of problem conditions;

. initial conditions (either given explicitly in the sol-

ution ®le or derived from a previous THERMIC

run);

. time step, unit of time, duration of modelling.

Two output ®les will be generated:

1. a �.lst ®le that contains formatted results with all

the parameters of the problem and the mesh data

(optional );

2. a �.out ®le that contains unformatted results for

plotting purposes or to be used as initial conditions

for a further run of THERMIC on the same mesh.

Two environment ®les are required in the current

directory (default) or in the directory speci®ed during

the compilation process:

. one ®le containing the user's messages. The ®lename

extension de®nes the language: messther.ENG and

messther.FRE for English and French messages re-

spectively;

. Thermic.ini contains the code of the language for

the THERMIC program messages (ENG for

English, FRE for French).

Examples of all input and output ®les used by

THERMIC are given in the appendices.

5. Testing and examples

THERMIC has been tested on various problems

with known analytical solutions (Carslaw and Jaeger,

1986) involving all allowed boundary conditions, heat

production and for both transient and steady-state

cases. Results of these tests are available on request

from the authors.

Some applications already exist in volcanism (cool-

ing of a magma chamber; Chery et al., 1991), paleo-

magnetism (cooling of dykes and lava ¯ows; Smith et

al., 1991), metamorphism (study of a granitic magma

ascent; Moinet et al., 1989) and ¯uid ¯ows in a sedi-

mentary basin (Vasseur et al., 1993).

We have chosen to illustrate this presentation with

the example of a cooling dyke (Smith et al., 1991). In

that study, the authors compared a model of cooling

dyke to a pro®le of paleotemperatures observed in a

Permian red sandstone layer intruded by a Plio±

Pleistocene basaltic dyke.

During dyke injection, the ¯owing magma advects

Fig. 2. Example of isotherm plot for sphere with prescribed temperatures on boundaries (steady-state case, homogeneous properties

and axisymmetry).
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heat through the dyke, while heat is conducted out of

the dyke into the surrounding rock. Several analytical

models exist for simple geometry to calculate the tem-

perature in and around the magmatic intrusion, but

none of them can take into account simultaneously the

e�ects of the following parameters that could play an

important role in such phenomena:

. thermal di�usivity, k � K=rc, of both the dyke and

the host rock and its temperature dependence which

enters through the temperature dependence of the

thermal conductivity K � aK � bK=�Y� 273� estab-

lished from empirical considerations (Hanley et al.,

1978); the product of the density r and the heat ca-

pacity of the rock, c, is assumed to be constant;

. latent heat of crystallization of the basalt, Lf ;

. ¯ow duration of the magma;

. width of the ¯owing magma in the central part of

the dyke relative to the thickness of the possibly

solidi®ed basaltic layer at the channel periphery.

Our physical model based on a two-dimensional box,

100 m wide and 200 m high, is described on Fig. 4. The

abscissa x=0 corresponds to the dyke axis and the refer-

ence level is placed at y=100 m which corresponds to

the probable maximum depth of burial for the sand-

Fig. 3. Simpli®ed ¯ow chart showing input and output of THERMIC.
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stone bed at the time of intrusion. The medium is

divided into 36 elements (Fig. 5): 8 belong to the basalt

and 28 to the sandstone. The mesh is dense and the el-

ements regularly spaced along x in the basalt and in the

sandstone up to x=1.64 m; beyond that, the 2 remain-

ing elements are much wider. Each element contains 9

nodes, so that the temperatures are calculated over a

total of 185 nodes, every 4.38 cm in the basalt and every

5 cm in the sandstone up to 1.64 m.

5.1. Boundary conditions and initial conditions

Before the dyke injection, the horizontal heat ¯ux is

zero through the two vertical planes of the box (x= 0

and x= 100 m). At the bottom, we assume a vertical

¯ux of 80 mW mÿ2 which corresponds to a normal

geothermal gradient in the absence of heat production.

At the top, we assume a free exchange between the

earth's surface and the air which gives a surface tem-

perature ¯uctuating around 108C. Calculation of the

temperature distribution in this static problem places

the 128C isotherm at the reference level.

At t= 0, the dyke is instantaneously intruded and a

temperature of 11608C is prescribed at all the nodes as-

sociated with the dyke, while a temperature of 5868C

(intermediate between 11608C and the host rock tem-

perature) is assumed for the nodes at the basalt/sand-

stone interface.

The transient problem which results from the dyke

injection has been calculated for several cases:

Case 1: The dyke is injected instantaneously and

subsequently cools laterally by conduction into the

sandstone;

Case 2: Subsequent to its injection, the magma is

allowed to ¯ow for a prescribed time with uniform

and constant temperature;

Fig. 4. Physical model of basaltic dyke cooling with boundary

conditions.

Fig. 5. Mesh used to solve physical problem shown in Fig. 4. Structure is composed of 36 9-node elements corresponding to 185

nodes (numbers in italics). Grey area to the left corresponds to dyke.
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Case 3 and 4: The magma is allowed to ¯ow with

uniform and constant temperature through a certain

width around its median plane.

Each of the previous cases is subdivided into 3 sub-

cases:

(a) the thermal conductivity is temperature-indepen-

dent and there is no latent heat of crystallization

(Lf=0).

(b) the thermal conductivity is temperature depen-

dent (K � f �y�) in the basalt and in the sandstone

and the latent heat of the basalt is included

(Lf > 0).

(c) the e�ects of natural convection of pore water in

the host rock is approximated by increasing the lat-

tice conductivity in the sandstone by a factor Nu,

the Nusselt number, between values of 1 and 4,

K � Nu K0. The latent heat of the basalt is also

considered.

A simple model involving instantaneous emplace-

ment immediately followed by cooling (case 1) is

unrealistic for the dyke simulation (Smith et al., 1991).

The best result is obtained for case 4, subcase c, with a

44 cm wide ¯owing channel in the dyke, temperature

dependence for K and Lf > 0 and with limited natural

convection in the sandstone (the curves corresponding

to the subcases are represented in Fig. 6).

6. Computational performance

Table 1 summarises a few benchmarks of the pro-

gram applied to two di�erent meshes and running on

three computing platforms:

. Sun SparcStation 51, 64 Mb RAM, running Solaris

2.51.

. PC Pentium II 300 MHz, 256 Mb RAM, running

Windows NT 4.01 Workstation.

. PC Pentium MMX 200 MHz, 16 Mb RAM, running

Windows 951.

THERMIC was compiled with the MS Visual

C++1 compiler on the PC's platforms and the Gnu

C compiler on the SparcStation.

6.1. Availability and hardware requirements

THERMIC is available in two versions: Unix or MS

Windows (95, 98, NT) system-based computers. The

two packages are available on the web with a complete

installation procedure (THERMIC installation guide )

and a users guide (THERMIC user's guide ). The

THERMIC package has been successfully tested on

SUN1 and SGI1 UNIX workstations and on

Microsoft Windows 951 and Windows NT1 4.0 sys-

tem based PCs. The package contains source ®les (�.c,
�.h), make®les (Make®le, �.mak) and environment ®les

Fig. 6. Temperature vs. distance in sandstone for magma ¯owing through 44 cm wide central channel in dyke. Dashed line corre-

sponds to best-®tted curve to observed data (stars) and three dotted lines a, b and c to subcase models (see text). Best model (sub-

case c) is shown as thicker line.
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as well as executable ®les for both systems. The user

may directly run the executables or recompile the

whole program using any standard Unix C compiler or

the MS Visual C++1 compiler. The package also

includes a html directory with help and example ®les.

6.1.1. THERMIC for UNIX

THERMIC has been successfully compiled on Sun

Sparc Stations1 running Solaris1 and on Silicon

Graphics International Stations running Irix1 using

either the SunSparcs1 compiler, standard compiler

delivered with the machine or the Gnu C compiler

(gcc).

The package is a compressed tar ®le

thermic_unix.tar.Z (or thermic_unix.tar.gz).

Uncompress (use gzip or uncompress depending on the

archive ®le available) and unpack the archive ®le (use

tar command).

6.1.2. THERMIC for MS Windows

THERMIC has been successfully compiled on di�er-

ent PCs running Windows951, 981 and Windows NT

4.01 using the MS Visual C++1 compiler. The pack-

age is a zip ®le, thermic_pc.zip, compressed with win-

zip.

7. Conclusion

Tested on several platforms and already applied with

success to several geological problems, THERMIC pro-

vides an easy and rapid solution to most of the thermal

problems that a geoscientist may encounter in research

or teaching. Due to its modularity, THERMIC can be

easily upgraded and adapted to speci®c problems with

more detailed boundary conditions.
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Appendix A. Example of mesh ®le (Fig. 5)

Table 1

Running time of THERMIC in 7 di�erent cases (4, 20, 400 and 900 9-node-elements) with following boundary conditions: (1) and

(2) 3 prescribed temperatures; (3) and (4) 6 prescribed temperatures; (5) 42 prescribed temperatures; (6) 82 prescribed temperatures;

(7) 122 prescribed temperatures

Case Mesh (elements) Solution State Advection Running time (s)

Sun SS 5 Solaris 2.5 PC P II 300 NT 4.0 W PC P 200 Win 95

1 4 linear steady yes 0.16 0.30 0.55

2 4 linear transient (20 steps) yes 0.20 0.38 0.65

3 4 nonlinear steady no 0.13 0.30 0.50

4 4 nonlinear transient (10 steps) no 0.20 0.35 0.65

5 20 linear steady no 0.23 0.40 0.87

6 400 linear steady no 3.80 1.60 12.75

7 900 linear steady no 13.10 4.05 24.25
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Appendix B. Example of solution ®le (in input)
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Appendix C. Example of output ®le
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